Lecture 7 Self Tolerance Lymphoid Organs in Brief Lymphoid Organs In

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 7 Self Tolerance Lymphoid Organs in Brief Lymphoid Organs In Self Tolerance Lecture 7 Lymphoid Organs in brief Primary lymphoid organs Bone marrow Thymus Secondary lymphoid organs Lymph nodes Spleen Mucosal-associated lymph Can you think of examples? Lymphoid Organs in brief High endothelial venule SLC chemokine Dendritic cell Stromal cell Follicular Dendritic cell 1 Lymphocyte Trafficking General Features of Immune Tolerance • Discriminate self vs. non-self • B and T lymphocytes Tregs • Simple: recognition of antigen • Self-tolerance: still many unknowns • Multiple Layers of Tolerance Central Tolerance Immature lymphocytes Peripheral Tolerance Mature lymphocytes • Tolerance IS NOT perfect! T Cell Maturation Pathway 2 T Cell Central Tolerance • T Cell Central Tolerance - Thymus • In this generative tissue, usually only self antigens are present Foreign antigens are presented in secondary lymphoid sites • Think back to T cell development: Rearrangement of T cell receptor genes Immature progenitors are resistant Express low level of TCR to apoptosis Low levels of FAS Double positive - CD4 & CD8 High levels of Bcl-2 (anti-apoptotic) Double-positive High levels of FAS Very low Bcl-2 Highly sensitive to apoptosis!!!! Thymic Selection • Positive Selection T lymphocyte Also called MHC restriction *** Cortical Epithelial Cells Recognition of self MHC MCH + antigen!! T cell receptor diversity All T cells will have receptors that recognize MHC + antigen Short lived • Negative Selection Thymic dendritic cells general self antigens Medullary epithelial cells tissue specific antigens Thymic Selection 1. TCRs must recognize MHC+self antigen to pass through positive selection. 2. TCRs must mediate negative selection - ie. Self tolerance. 3. Later, must also signal activation when faced with foreign peptides. HOW CAN THIS WORK? 1. Positive selection Relatively weak TCR/MCH+self antigen 2. Negative selection Strong TCR/ MCH+ self antigen 3. T cell activation Strong TCR / MCH + antigen from APC 3 T Cell Tolerance - Positive Selection See video - T Cell development Negative Selection Apoptosis Overview Apoptotic cell being engulfed 4 Two Distinct T Cell Pathways Programmed Cell Death Two distinct Pathways Signaling & activation of Caspases Intrinsic major pathway in all cells regulation of mito integrity release of key apoptotic factors Cytochrome C Extrinsic death receptors (Fas) trimeric cell surface proteins bind to specific ligands (FasL) pro-apoptotic - mito leakage T Cell Peripheral Tolerance Layering of Tolerance Induction 1. Central tolerance - thymus** 2. Traffic patterns 3. Secondary Lymph organs 4. Missing signal 5. Activation Peripheral Tolerance T cell receptors that recognize rare thymus antigens Too rare to have sufficient MCH/peptide complexes Functional Ignorance 5 T Cell Anergy Regulatory T Cells UNKNOWN Mechanism Occurs in the thymus as well - subset of CD4 cells Bypass negative selective and mature into Tregs This means that they have high affinity for self antigens Regulatory T Cells Marker for Tregs FOXp3 Different: have adhesion molecules 6 B Cell Tolerance - Mainly Central Self-Tolerance Summary 7 .
Recommended publications
  • Of T Cell Tolerance
    cells Review Strength and Numbers: The Role of Affinity and Avidity in the ‘Quality’ of T Cell Tolerance Sébastien This 1,2,† , Stefanie F. Valbon 1,2,†, Marie-Ève Lebel 1 and Heather J. Melichar 1,3,* 1 Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; [email protected] (S.T.); [email protected] (S.F.V.); [email protected] (M.-È.L.) 2 Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada 3 Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The ability of T cells to identify foreign antigens and mount an efficient immune response while limiting activation upon recognition of self and self-associated peptides is critical. Multiple tolerance mechanisms work in concert to prevent the generation and activation of self-reactive T cells. T cell tolerance is tightly regulated, as defects in these processes can lead to devastating disease; a wide variety of autoimmune diseases and, more recently, adverse immune-related events associated with checkpoint blockade immunotherapy have been linked to a breakdown in T cell tolerance. The quantity and quality of antigen receptor signaling depend on a variety of parameters that include T cell receptor affinity and avidity for peptide. Autoreactive T cell fate choices (e.g., deletion, anergy, regulatory T cell development) are highly dependent on the strength of T cell receptor interactions with self-peptide. However, less is known about how differences in the strength Citation: This, S.; Valbon, S.F.; Lebel, of T cell receptor signaling during differentiation influences the ‘function’ and persistence of anergic M.-È.; Melichar, H.J.
    [Show full text]
  • MCB 50 Immunity and Disease Lecture Outline MHC Restriction Jan
    MCB 50 Immunity and Disease Lecture Outline MHC Restriction Jan. 31, 2001 I. Definition of self MHC restriction; MHC restriction is the requirement that APC or target cells express MHC molecules that the T cell recognizes as self in order for T cell to respond to the antigen presented by that APC or target cell. (T cells will only recognize antigens presented by their own MHC molecules.) CD8 T cells bind class I MHC which are expressed on most cells in the body. CD4 T cells bind class II MHC which are only expressed on specialized APCs. APCs primarily reside in 2 ° lymphoid tissue (lymph nodes, spleen) but can be found in most tissues. II. MHC Genetics Mouse MHC gene complex called H-2. Human MHC gene complex called HLA. MHC Molecules Mouse H-2 Human HLA Class I K,D,L A, B, C Class II I-A, I-E DR, DQ, DP Definitions: Alleles functional forms of the same genes. Heterozygous different allele at each locus. Homozygous same allele at each locus. Haplotype is the total set of MHC alleles present on one chromosome. For each MHC gene locus you have 2 copies which can be denoted by their allele classification. Most humans will be heterozygous and will have different alleles for each of the different HLA loci. (e.g. A2/A12, B17/B83, C3/C37, DR3/DR4 etc). Syngeneic identical at all MHC loci same allele on both chromosomes. (inbred mice or identical twins). Allogeneic --genetically different at MHC different alleles. Every person gets a chromosome from each biological parent which contains an MHC molecule at each locus.
    [Show full text]
  • Repertoire Selection from Data on the Mature T Cell Deriving Quantitative
    Deriving Quantitative Constraints on T Cell Selection from Data on the Mature T Cell Repertoire This information is current as Vincent Detours, Ramit Mehr and Alan S. Perelson of October 2, 2021. J Immunol 2000; 164:121-128; ; doi: 10.4049/jimmunol.164.1.121 http://www.jimmunol.org/content/164/1/121 Downloaded from References This article cites 75 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/164/1/121.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Deriving Quantitative Constraints on T Cell Selection from Data on the Mature T Cell Repertoire1 Vincent Detours,*†‡ Ramit Mehr,§ and Alan S. Perelson2* The T cell repertoire is shaped in the thymus through positive and negative selection. Thus, data about the mature repertoire may be used to infer information on how TCR generation and selection operate.
    [Show full text]
  • Prenatal Allospecific NK Cell Tolerance Hinges on Instructive
    Prenatal Allospecific NK Cell Tolerance Hinges on Instructive Allorecognition through the Activating Receptor during Development This information is current as of September 23, 2021. Amir M. Alhajjat, Beverly S. Strong, Amanda E. Lee, Lucas E. Turner, Ram K. Wadhwani, John R. Ortaldo, Jonathan W. Heusel and Aimen F. Shaaban J Immunol 2015; 195:1506-1516; Prepublished online 1 July 2015; Downloaded from doi: 10.4049/jimmunol.1500463 http://www.jimmunol.org/content/195/4/1506 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2015/07/01/jimmunol.150046 Material 3.DCSupplemental References This article cites 45 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/195/4/1506.full#ref-list-1 Why The JI? Submit online. by guest on September 23, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Prenatal Allospecific NK Cell Tolerance Hinges on Instructive Allorecognition through the Activating Receptor during Development Amir M.
    [Show full text]
  • Thymic Nurse Cells Participate in Heterotypic
    Send Orders for Reprints to [email protected] 828 Current Molecular Medicine 2015, 15, 828-835 Thymic Nurse Cells Participate in Heterotypic Internalization and Repertoire Selection of Immature Thymocytes; Their Removal from the Thymus of Autoimmune Animals May be Important to Disease Etiology J.C. Guyden1, M. Martinez2, R.V.E. Chilukuri1, V. Reid3, F. Kelly4 and M.-O.D. Samms*,1 1Department of Biology, The City College of New York, New York, NY 10031, USA 2Department of Biology College of Arts and Sciences, Tuskegee University, Armstrong Hall, Room 107, 1200 West Montgomery Road, Tuskegee, AL 36088, USA 3The Hall Perrine Cancer Center, Department of Surgery, Mercy Medical Center Cedar Rapids, IA, Division of Surgical Oncology & Endocrine Surgery, The University of Iowa Hospitals & Clinics, 200 Hawkins Dr, Iowa City, IA 52242, USA 4Essential Health, St Mary’s Medical Center, 407 East 3rd Street, Duluth, MN 55805, USA M.-O.D. Samms Abstract: Thymic nurse cells (TNCs) are specialized epithelial cells that reside in the thymic cortex. The initial report of their discovery in 1980 showed TNCs to contain up to 200 thymocytes within specialized vacuoles in their cytoplasm. Much has been reported since that time to determine the function of this heterotypic internalization event that exists between TNCs and developing thymocytes. In this review, we discuss the literature reported that describes the internalization event and the role TNCs play during T cell development in the thymus as well as why these multicellular complexes may be important in inhibiting the development of autoimmune diseases. Keywords: Thymic nurse cells, internalization, MHC restriction, lupus erythromatosus.
    [Show full text]
  • Plasmodium Asexual Growth and Sexual Development in the Haematopoietic Niche of the Host
    REVIEWS Plasmodium asexual growth and sexual development in the haematopoietic niche of the host Kannan Venugopal 1, Franziska Hentzschel1, Gediminas Valkiūnas2 and Matthias Marti 1* Abstract | Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood- feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood- stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions. Gametogenesis Malaria is one of the major life- threatening infectious Malaria parasites have a complex life cycle marked Maturation of male and female diseases in humans and is particularly prevalent in trop- by successive rounds of asexual replication across gametes. ical and subtropical low- income regions of the world.
    [Show full text]
  • HLA-Restricted, Processing- and Metabolism-Independent Pathway of Drug Recognition by Human Alpha Beta T Lymphocytes
    HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human alpha beta T lymphocytes. M P Zanni, … , S Valitutti, W J Pichler J Clin Invest. 1998;102(8):1591-1598. https://doi.org/10.1172/JCI3544. Research Article T cell recognition of drugs is explained by the hapten-carrier model, implying covalent binding of chemically reactive drugs to carrier proteins. However, most drugs are nonreactive and their recognition by T cells is unclear. We generated T cell clones from allergic individuals specific to sulfamethoxazole, lidocaine (nonreactive drugs), and cef-triaxone (per se reactive beta-lactam antibiotic) and compared the increase of intracellular free calcium concentration ([Ca2+]i) and the kinetics of T cell receptor (TCR) downregulation of these clones by drug-specific stimulations. All drugs tested induced an MHC-restricted, dose- and antigen-presenting cell (APC)-dependent TCR downregulation on specific CD4(+) and CD8(+) T cell clones. Chemically nonreactive drugs elicited an immediate and sustained [Ca2+]i increase and a rapid TCR downregulation, but only when these drugs were added in solution to APC and clone. In contrast, the chemically reactive hapten ceftriaxone added in solution needed > 6 h to induce TCR downregulation. When APC were preincubated with ceftriaxone, a rapid downregulation of the TCR and cytokine secretion was observed, suggesting a stable presentation of a covalently modified peptide. Our data demonstrate two distinct pathways of drug presentation to activated specific T cells. The per se reactive ceftriaxone is presented after covalent binding to carrier peptides. Nonreactive drugs can be recognized by specific alphabeta+ T cells via a nonconventional presentation pathway based on a labile binding […] Find the latest version: https://jci.me/3544/pdf HLA-restricted, Processing- and Metabolism-independent Pathway of Drug Recognition by Human ab T Lymphocytes Martin P.
    [Show full text]
  • The Role of Natural Killer Cells in Pathogenesis of Autoimmune Diseases
    Review paper DOI: 10.5114/ceji.2015.56971 The role of natural killer cells in pathogenesis of autoimmune diseases Katarzyna PoPKo, ElżbiEta GórsKa Medical University of Warsaw, Poland Abstract There is growing evidence that NK cell-mediated immunoregulation plays an important role in the control of autoimmunity. NK cells are a subset of lymphocytes that generally contribute to innate immu- nity but have also a great impact on the function of t and b lymphocytes. the major role of nK cells is cytotoxic reaction against neoplastic, infected and autoreactive cells, but they regulatory function seems to play more important role in the pathogenesis of autoimmune diseases. Numerous studies suggested the involvement of nK cells in pathogenesis of such a common autoimmune diseases as juvenile rheu- matoid arthritis, type i diabetes and autoimmune thyroid diseases. the defects of nK cells regulatory function as well as cytotoxic abilities are common in patients with autoimmune diseases with serious consequences including HLH hemophagocytic lymphocytosis (HLH) and macrophage activation syn- drome (Mas). the early diagnosis of nK cells defect responsible for the loss of the protective abilities is crucial for the prevention of life-threatening complications and implementation of necessary treatment. Key words: nK cells, autoimmune reaction, Hashimoto thyroiditis, type 1 diabetes, juvenile rheumatoid arthritis. (Cent Eur J immunol 2015; 40 (4): 470-476) Natural killer cells function receptors (2B4) play activating roles [6-8]. The inhibition Natural killer cells are a subset of lymphocytes that of NK cell activation depends on the presence of MHC contribute to innate immunity. They are developed in the class I molecules.
    [Show full text]
  • T Cell Maturation
    T-cell Maturation T cell maturation What allows T cell maturation? T cell progenitor DN DP SP 2ry • Direct contact with thymic epithelial cells (Subcapsular (Cortex) (Medulla) lymphoid zone) organs • Influence of thymic hormones THYMUS • Growth factors (cytokines, CSF) The earliest T cell precursors in the thymus : - Express Thy-1 (mice) - Have not yet rearranged TCR loci - Do NOT express CD4 or CD8 - Do not express CD3 - Are called “double negatives” MARKERS: - C-KIT - Receptor for Stem Cell Growth Factor - CD44 - Adh. Molecule. Homing to thymus - CD25 - Alpha chain of IL-2 receptor Time Course of Appearance in Thymus - Most double negative thymocytes will give rise to αβαβαβ T cells (in mice and humans). * - Some (5%) will differentiate into γδγδγδ T cells. - The developmental pathway of γδγδγδ T cells is not well defined. 1 Why is Pre-TCR important? - CD3 expression first appear between DN2 to DN3 - Double negative thymocytes (DN3 stage) undergo β chain locus re-arrangement. - The newly formed β chain combines with the Pre-Tα (surrogate chain) and CD3 to form the Pre-T cell receptor ( Pre-TCR ). 1) Productive TCR β chain re-arrangement 2) Signals for proliferation (similar β chain) and maturation 3) Suppresses further β chain re-arrangement (allelic exclusion) 4) Signals for TCR ααα chain re-arrangement 4) Induces development of CD4+8+ (double positive) stage - After β chain re-arrangement is completed the DN3 cells Positive and Negative selection of T cells: GOAL—to progress to DN4. recognize foreign Ag combined with self MHC - Both CD4 and CD8 are expressed = double positive (DP) cells.
    [Show full text]
  • T Cell Receptor
    Self-MHC restriction of the T cell Chapter 9 receptor (TCR) • Self restriction- T cell can only be activated by a unique peptide associated with self-MHC. T cell Receptor • Two models: – A) Dual receptor model : two receptors, one for the antigen and one for the MHC molecule – B) Altered self model : One receptor that recognizes both antigen and MHC molecule Self-MHC restriction of the TCR The αβαβαβ TCR is similar in size and structure to an antibody Fab fragment The αβαβαβ T cell receptor - Two chains - ααα and βββ - Two domains per chain - constant (C) domain - variable (V) domain - Chains held together by disulfide bonds - Small cytoplasmic tails on each chain Kuby Figure 9-3 Kuby Figure 9-3 1 - Some T cells express a TCR made of two alternate chains - γγγ and δδδ Table 9.1 Comparison of TCR - The γδγδγδ TCR is structurally similar αβ T cells γδγδγδ T cells to the αβαβαβ TCR. • % CD3 + 90-99% 1-10% - 0.5-15% of peripheral blood T cells • TCR V gene Large Small use the γδγδγδ TCR. A higher proportion in germline of T cells in the skin and intestinal epithelium use the γδγδγδ TCR. • CD4/CD8 60% <1% −−−γδγδγδ T cells seem to be biased CD4 toward recognition of specific CD8 30% 30% microbial antigens. CD4-CD8- <1% 60% −−−γδγδγδ T cells are thought to represent • MHC restriction Yes No a different lineage of T cells with specialized functions. • Ligands Peptide+ MHC Phospholipid antigen Intact protein Kuby Figure 9-9 (modified) TCR Receptor Complex- CD3 The TCR complex includes CD3 - 3 heterodimers: γεγεγε , εδεδεδ and ζζζζζζ - 1) TCR is not expressed without CD3.
    [Show full text]
  • Safer Conditioning for Antigen-Encoding Bone Marrow Transfer to Induce Immune Tolerance
    Safer conditioning for antigen-encoding bone marrow transfer to induce immune tolerance Md Anayet Hasan BSc (Honors), MSc in Biotechnology https://orcid.org/0000-0003-3796-7031 A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in Year 2020 Faculty of Medicine i | P a g e Abstract Transplanting genetically-engineered hematopoietic stem cells (HSC) encoding antigen targeted to dendritic cells (DC) or other antigen presenting cells (APC) provides an efficient means to induce antigen-specific T-cell tolerance. Low-level, but stable HSC chimerism is sufficient for T-cell tolerance induction and prevention of autoimmune disease in animal models. A current limitation of this approach is, highly-toxic myeloablative and/or immunoablative pre-transfer recipient conditioning regimens are typically used to achieve high chimerism levels with the transferred engineered HSC. Whilst low doses of total body irradiation can be used in order to reduce toxicity, this is still genotoxic, leading to cell and DNA damage. Several alternatives to total body irradiation and other genotoxic (e.g. chemotherapy) approaches have been suggested. One alternative that has been reported is the use of a CD45-targeted immunotoxin (CD45-SAP) that has been shown to deplete >98% of HSC and facilitates 90% of donor chimerism when used at high doses in mice, but CD45- SAP is highly immunoablative at the explored high doses. To promote clinical applicability that might be achieved by avoiding immunodepletion and, as low-levels of stable donor chimerism are suitable to generate T-cell tolerance, I tested whether use of lower doses of CD45.2-SAP that might preserve immunity would be suitable as a low-toxicity conditioning regimen.
    [Show full text]
  • MHC − Bound to Peptide the First Structures of T Cell Receptors
    The First Structures of T Cell Receptors Bound to Peptide−MHC Kai W. Wucherpfennig This information is current as J Immunol 2010; 185:6391-6393; ; of September 26, 2021. doi: 10.4049/jimmunol.1090110 http://www.jimmunol.org/content/185/11/6391 Downloaded from References This article cites 26 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/185/11/6391.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 26, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The First Structures of T Cell Receptors Bound to Peptide–MHC Kai W. Wucherpfennig he structure of the MHC class I molecule HLA-A2 yielded small quantities were reported. On the MHC side, it reported in 1987 by Bjorkman et al. (1) had revealed became clear that the MHC helices actually folded around T how peptide Ags are presented to T cells: peptides are the offered peptide and that it was impossible to generate sta- buried in the long and deep groove of the MHC molecule, ble, empty MHC class I molecules that could later be loaded flanked on each side by a long a helix.
    [Show full text]