Isaac Newton
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leibniz' Dynamical Metaphysicsand the Origins
LEIBNIZ’ DYNAMICAL METAPHYSICSAND THE ORIGINS OF THE VIS VIVA CONTROVERSY* by George Gale Jr. * I am grateful to Marjorie Grene, Neal Gilbert, Ronald Arbini and Rom Harr6 for their comments on earlier drafts of this essay. Systematics Vol. 11 No. 3 Although recent work has begun to clarify the later history and development of the vis viva controversy, the origins of the conflict arc still obscure.1 This is understandable, since it was Leibniz who fired the initial barrage of the battle; and, as always, it is extremely difficult to disentangle the various elements of the great physicist-philosopher’s thought. His conception includes facets of physics, mathematics and, of course, metaphysics. However, one feature is essential to any possible understanding of the genesis of the debate over vis viva: we must note, as did Leibniz, that the vis viva notion was to emerge as the first element of a new science, which differed significantly from that of Descartes and Newton, and which Leibniz called the science of dynamics. In what follows, I attempt to clarify the various strands which were woven into the vis viva concept, noting especially the conceptual framework which emerged and later evolved into the science of dynamics as we know it today. I shall argue, in general, that Leibniz’ science of dynamics developed as a consistent physical interpretation of certain of his metaphysical and mathematical beliefs. Thus the following analysis indicates that at least once in the history of science, an important development in physical conceptualization was intimately dependent upon developments in metaphysical conceptualization. 1. -
THE EARTH's GRAVITY OUTLINE the Earth's Gravitational Field
GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY OUTLINE The Earth's gravitational field 2 Newton's law of gravitation: Fgrav = GMm=r ; Gravitational field = gravitational acceleration g; gravitational potential, equipotential surfaces. g for a non–rotating spherically symmetric Earth; Effects of rotation and ellipticity – variation with latitude, the reference ellipsoid and International Gravity Formula; Effects of elevation and topography, intervening rock, density inhomogeneities, tides. The geoid: equipotential mean–sea–level surface on which g = IGF value. Gravity surveys Measurement: gravity units, gravimeters, survey procedures; the geoid; satellite altimetry. Gravity corrections – latitude, elevation, Bouguer, terrain, drift; Interpretation of gravity anomalies: regional–residual separation; regional variations and deep (crust, mantle) structure; local variations and shallow density anomalies; Examples of Bouguer gravity anomalies. Isostasy Mechanism: level of compensation; Pratt and Airy models; mountain roots; Isostasy and free–air gravity, examples of isostatic balance and isostatic anomalies. Background reading: Fowler §5.1–5.6; Lowrie §2.2–2.6; Kearey & Vine §2.11. GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY FIELD Newton's law of gravitation is: ¯ GMm F = r2 11 2 2 1 3 2 where the Gravitational Constant G = 6:673 10− Nm kg− (kg− m s− ). ¢ The field strength of the Earth's gravitational field is defined as the gravitational force acting on unit mass. From Newton's third¯ law of mechanics, F = ma, it follows that gravitational force per unit mass = gravitational acceleration g. g is approximately 9:8m/s2 at the surface of the Earth. A related concept is gravitational potential: the gravitational potential V at a point P is the work done against gravity in ¯ P bringing unit mass from infinity to P. -
A Conjecture of Thermo-Gravitation Based on Geometry, Classical
A conjecture of thermo-gravitation based on geometry, classical physics and classical thermodynamics The authors: Weicong Xu a, b, Li Zhao a, b, * a Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education of China, Tianjin 300350, China b School of mechanical engineering, Tianjin University, Tianjin 300350, China * Corresponding author. Tel: +86-022-27890051; Fax: +86-022-27404188; E-mail: [email protected] Abstract One of the goals that physicists have been pursuing is to get the same explanation from different angles for the same phenomenon, so as to realize the unity of basic physical laws. Geometry, classical mechanics and classical thermodynamics are three relatively old disciplines. Their research methods and perspectives for the same phenomenon are quite different. However, there must be some undetermined connections and symmetries among them. In previous studies, there is a lack of horizontal analogical research on the basic theories of different disciplines, but revealing the deep connections between them will help to deepen the understanding of the existing system and promote the common development of multiple disciplines. Using the method of analogy analysis, five basic axioms of geometry, four laws of classical mechanics and four laws of thermodynamics are compared and analyzed. The similarity and relevance of basic laws between different disciplines is proposed. Then, by comparing the axiom of circle in geometry and Newton’s law of universal gravitation, the conjecture of the law of thermo-gravitation is put forward. Keywords thermo-gravitation, analogy method, thermodynamics, geometry 1. Introduction With the development of science, the theories and methods of describing the same macro system are becoming more and more abundant. -
Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. -
Reposs #19: Newtonianism in the Scandinavian Countries, 1690–1790
RePoSS: Research Publications on Science Studies RePoSS #19: Newtonianism in the Scandinavian Countries, 1690–1790 Helge Kragh August 2012 Centre for Science Studies, University of Aarhus, Denmark Research group: History and philosophy of science Please cite this work as: Helge Kragh (Aug. 2012). Newtonianism in the Scandinavian Countries, 1690–1790. RePoSS: Research Publications on Sci- ence Studies 19. Aarhus: Centre for Science Studies, University of Aarhus. url: http://www.css.au.dk/reposs. Copyright c Helge Kragh, 2012 1 Newtonianism in the Scandinavian Countries, 1690-1790 HELGE KRAGH 1 Introduction In the present context, the Scandinavian countries refer to two national or administrative units, the one being Denmark and the other Sweden. In the period here considered, largely the century from 1690 to 1790, ‘Denmark’ means really Denmark-Norway, for until 1814 Norway was part of the double monarchy ruled by the king and his government in Copenhagen. It should also be kept in mind that parts of what is today Germany, namely Schleswig-Holstein, belonged to the kingdom. However, as far as language and culture were concerned, these parts of southern Denmark were more German than Danish, and they played no important role in the scientific life of the kingdom. Sweden covered a much larger geographical area than it does today. The country had expanded greatly during the seventeenth century, when not only Finland but also parts of the Baltic area and northern Germany came under Swedish rule. About 1720, after the Great Northern War, Sweden lost most of its possessions, but the major part of Finland remained as part of the country until Centre for Science Studies, Department of Physics and Astronomy, Aarhus University, Denmark. -
Universal Gravitational Constant EX-9908 Page 1 of 13
Universal Gravitational Constant EX-9908 Page 1 of 13 Universal Gravitational Constant EQUIPMENT 1 Gravitational Torsion Balance AP-8215 1 X-Y Adjustable Diode Laser OS-8526A 1 45 cm Steel Rod ME-8736 1 Large Table Clamp ME-9472 1 Meter Stick SE-7333 INTRODUCTION The Gravitational Torsion Balance reprises one of the great experiments in the history of physics—the measurement of the gravitational constant, as performed by Henry Cavendish in 1798. The Gravitational Torsion Balance consists of two 38.3 gram masses suspended from a highly sensitive torsion ribbon and two1.5 kilogram masses that can be positioned as required. The Gravitational Torsion Balance is oriented so the force of gravity between the small balls and the earth is negated (the pendulum is nearly perfectly aligned vertically and horizontally). The large masses are brought near the smaller masses, and the gravitational force between the large and small masses is measured by observing the twist of the torsion ribbon. An optical lever, produced by a laser light source and a mirror affixed to the torsion pendulum, is used to accurately measure the small twist of the ribbon. THEORY The gravitational attraction of all objects toward the Earth is obvious. The gravitational attraction of every object to every other object, however, is anything but obvious. Despite the lack of direct evidence for any such attraction between everyday objects, Isaac Newton was able to deduce his law of universal gravitation. Newton’s law of universal gravitation: m m F G 1 2 r 2 where m1 and m2 are the masses of the objects, r is the distance between them, and G = 6.67 x 10-11 Nm2/kg2 However, in Newton's time, every measurable example of this gravitational force included the Earth as one of the masses. -
RELATIVISTIC GRAVITY and the ORIGIN of INERTIA and INERTIAL MASS K Tsarouchas
RELATIVISTIC GRAVITY AND THE ORIGIN OF INERTIA AND INERTIAL MASS K Tsarouchas To cite this version: K Tsarouchas. RELATIVISTIC GRAVITY AND THE ORIGIN OF INERTIA AND INERTIAL MASS. 2021. hal-01474982v5 HAL Id: hal-01474982 https://hal.archives-ouvertes.fr/hal-01474982v5 Preprint submitted on 3 Feb 2021 (v5), last revised 11 Jul 2021 (v6) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Relativistic Gravity and the Origin of Inertia and Inertial Mass K. I. Tsarouchas School of Mechanical Engineering National Technical University of Athens, Greece E-mail-1: [email protected] - E-mail-2: [email protected] Abstract If equilibrium is to be a frame-independent condition, it is necessary the gravitational force to have precisely the same transformation law as that of the Lorentz-force. Therefore, gravity should be described by a gravitomagnetic theory with equations which have the same mathematical form as those of the electromagnetic theory, with the gravitational mass as a Lorentz invariant. Using this gravitomagnetic theory, in order to ensure the relativity of all kinds of translatory motion, we accept the principle of covariance and the equivalence principle and thus we prove that, 1. -
PPN Formalism
PPN formalism Hajime SOTANI 01/07/2009 21/06/2013 (minor changes) University of T¨ubingen PPN formalism Hajime Sotani Introduction Up to now, there exists no experiment purporting inconsistency of Einstein's theory. General relativity is definitely a beautiful theory of gravitation. However, we may have alternative approaches to explain all gravitational phenomena. We have also faced on some fundamental unknowns in the Universe, such as dark energy and dark matter, which might be solved by new theory of gravitation. The candidates as an alternative gravitational theory should satisfy at least three criteria for viability; (1) self-consistency, (2) completeness, and (3) agreement with past experiments. University of T¨ubingen 1 PPN formalism Hajime Sotani Metric Theory In only one significant way do metric theories of gravity differ from each other: ! their laws for the generation of the metric. - In GR, the metric is generated directly by the stress-energy of matter and of nongravitational fields. - In Dicke-Brans-Jordan theory, matter and nongravitational fields generate a scalar field '; then ' acts together with the matter and other fields to generate the metric, while \long-range field” ' CANNOT act back directly on matter. (1) Despite the possible existence of long-range gravitational fields in addition to the metric in various metric theories of gravity, the postulates of those theories demand that matter and non-gravitational fields be completely oblivious to them. (2) The only gravitational field that enters the equations of motion is the metric. Thus the metric and equations of motion for matter become the primary entities for calculating observable effects. -
Regions of Central Configurations in a Symmetric 4+1 Body Problem
CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY, ISLAMABAD Regions of Central Configurations in a Symmetric 4+1 Body Problem by Irtiza Ul Hassan A thesis submitted in partial fulfillment for the degree of Master of Philosophy in the Faculty of Computing Department of Mathematics 2020 i Copyright c 2020 by Irtiza Ul Hassan All rights reserved. No part of this thesis may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, by any information storage and retrieval system without the prior written permission of the author. ii To my parent, teachers, wife, friends and daughter Hoorain Fatima. iii CERTIFICATE OF APPROVAL Regions of Central Configurations in a Symmetric 4+1 Body Problem by Irtiza Ul Hassan MMT173025 THESIS EXAMINING COMMITTEE S. No. Examiner Name Organization (a) External Examiner Dr. Ibrar Hussain NUST, Islamabad (b) Internal Examiner Dr. Muhammad Afzal CUST, Islamabad (c) Supervisor Dr. Abdul Rehman Kashif CUST, Islamabad Dr. Abdul Rehman Kashif Thesis Supervisor December, 2020 Dr. Muhammad Sagheer Dr. Muhammad Abdul Qadir Head Dean Dept. of Mathematics Faculty of Computing December, 2020 December, 2020 iv Author's Declaration I, Irtiza Ul Hassan hereby state that my M.Phil thesis titled \Regions of Central Configurations in a Symmetric 4+1 Body Problem" is my own work and has not been submitted previously by me for taking any degree from Capital University of Science and Technology, Islamabad or anywhere else in the country/abroad. At any time if my statement is found to be incorrect even after my graduation, the University has the right to withdraw my M.Phil Degree. -
Some Aspects of Thinking of Jakub Kresa for Development of School Mathematics
Ján GUNČAGA, Katholische Universität in Ružomberok, SK Some aspects of thinking of Jakub Kresa for development of school mathematics This article makes an excursion into the history of mathematics, which is used in school mathematics. We would like to describe some components of mathematical notions developed by Jakub Kresa (1648-1715). We would like to compare his work with another two big mathematicians Isaac Newton (1643 -1727) and René Descartes (1596-1650), because it is pos- sible to see some similarities in topics of their works. Isaac Newton wrote separately arithmetic and algebra in Arithmetica universalis, but in his work Philosophiae naturalis principia mathematica he used only geometry. René Descartes integrates the knowledge from algebra, arithmetic and ge- ometry in his work La Geometrie and in a similar way, Jakub Kresa descri- bed the mathematical theory in his work Analysis speciose trigonometriae sphaericae. 1. Introduction Jakub Kresa lived in the time in which arithmetic has geometrical represen- tations. René Descartes wrote in his book La Geometrie that “any problem in geometry can easily be reduced to such terms that a knowledge of the lengths of certain straight lines is sufficient for its construction. Just as arithmetic consisting of only four or five operations, namely, addition, sub- traction, multiplication, division and the extraction of roots.” Now let AB taken as unity (see Figure 1), and let be required to multiply BD by BC. Descartes argues that “I only have to join the points A and C, and draw DE parallel to CA, then BE is the product of BD and BC. -
The Confrontation Between General Relativity and Experiment
The Confrontation between General Relativity and Experiment Clifford M. Will Department of Physics University of Florida Gainesville FL 32611, U.S.A. email: [email protected]fl.edu http://www.phys.ufl.edu/~cmw/ Abstract The status of experimental tests of general relativity and of theoretical frameworks for analyzing them are reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the E¨otv¨os experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse–Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves. arXiv:1403.7377v1 [gr-qc] 28 Mar 2014 1 Contents 1 Introduction 3 2 Tests of the Foundations of Gravitation Theory 6 2.1 The Einstein equivalence principle . .. 6 2.1.1 Tests of the weak equivalence principle . .. 7 2.1.2 Tests of local Lorentz invariance . .. 9 2.1.3 Tests of local position invariance . 12 2.2 TheoreticalframeworksforanalyzingEEP. ....... 16 2.2.1 Schiff’sconjecture ................................ 16 2.2.2 The THǫµ formalism ............................. -
Newton As Philosopher
This page intentionally left blank NEWTON AS PHILOSOPHER Newton’s philosophical views are unique and uniquely difficult to categorize. In the course of a long career from the early 1670s until his death in 1727, he articulated profound responses to Cartesian natural philosophy and to the prevailing mechanical philosophy of his day. Newton as Philosopher presents Newton as an original and sophisti- cated contributor to natural philosophy, one who engaged with the principal ideas of his most important predecessor, René Descartes, and of his most influential critic, G. W. Leibniz. Unlike Descartes and Leibniz, Newton was systematic and philosophical without presenting a philosophical system, but, over the course of his life, he developed a novel picture of nature, our place within it, and its relation to the creator. This rich treatment of his philosophical ideas, the first in English for thirty years, will be of wide interest to historians of philosophy, science, and ideas. ANDREW JANIAK is Assistant Professor in the Department of Philosophy, Duke University. He is editor of Newton: Philosophical Writings (2004). NEWTON AS PHILOSOPHER ANDREW JANIAK Duke University CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521862868 © Andrew Janiak 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.