DETERMINATION of PHYTOCHEMICAL COMPOUND from Spirogyra Sp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spirogyra and Mougeotia Zornitza G
Volatile Components of the Freshwater AlgaeSpirogyra and Mougeotia Zornitza G. Kamenarska3, Stefka D. Dimitrova-Konaklievab, Christina Nikolovac, Athanas II. Kujumgievd, Kamen L. Stefanov3, Simeon S. Popov3 * a Institute of Organic Chemistry with Centre of Phytochemistry. Bulgarian Academy of Sciences, Sofia 1113. Bulgaria. Fax: ++3592/700225. E-mail: [email protected] b Faculty of Pharmacy, Medical University, Sofia 1000, Bulgaria c Institute of Soil Sciences and Agroecology, “N. Pushkarov”, Sofia 1080, Bulgaria d Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria * Author for correspondence and reprint requests Z. Naturforsch. 55c, 495-499 (2000); received February 4/March 13, 2000 Antibacterial Activity, Mougeotia, Spirogyra, Volatile Compounds Several species of freshwater green algae belonging to the order ZygnematalesSpirogyra ( crassa (Ktz.) Czurda, S. longata (Vauch.) Ktz., and Mougeotia viridis (Ktz.) Wittr.) were found to have a specific composition of the volatile fraction, which confirms an earlier pro posal for the existence of two groups in the genusSpirogyra. Antibacterial activity was found in volatiles from S. longata. Introduction and Hentschel, 1966). Tannins (Nishizawa et al., 1985; Nakabayashi and Hada, 1954) and fatty acids While the chemical composition and biological (Pettko and Szotyori, 1967) were also found in activity of marine algae have been studied in Spyrogyra sp. Evidently, research on chemical depth, freshwater algae have been investigated composition of Spirogyra and Mougeotia species less intensively, especially those belonging to Zyg- is very limited, especially on their secondary me nemaceae (order Zygnematales). The most nu tabolites, which often possess biological activity. merous representatives of this family in the Bul The volatile constituents of Zygnemaceae algae garian flora are generaSpirogyra, Mougeotia and are of interest, because such compounds often Zygnema, which inhabit rivers and ponds. -
Induction of Conjugation and Zygospore Cell Wall Characteristics
plants Article Induction of Conjugation and Zygospore Cell Wall Characteristics in the Alpine Spirogyra mirabilis (Zygnematophyceae, Charophyta): Advantage under Climate Change Scenarios? Charlotte Permann 1 , Klaus Herburger 2 , Martin Felhofer 3 , Notburga Gierlinger 3 , Louise A. Lewis 4 and Andreas Holzinger 1,* 1 Department of Botany, Functional Plant Biology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 2 Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; [email protected] 3 Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; [email protected] (M.F.); [email protected] (N.G.) 4 Department of Ecology and Evolutionary Biology, University of Conneticut, Storrs, CT 06269-3043, USA; [email protected] * Correspondence: [email protected] Abstract: Extreme environments, such as alpine habitats at high elevation, are increasingly exposed to man-made climate change. Zygnematophyceae thriving in these regions possess a special means Citation: Permann, C.; Herburger, K.; of sexual reproduction, termed conjugation, leading to the formation of resistant zygospores. A field Felhofer, M.; Gierlinger, N.; Lewis, sample of Spirogyra with numerous conjugating stages was isolated and characterized by molec- L.A.; Holzinger, A. Induction of ular phylogeny. We successfully induced sexual reproduction under laboratory conditions by a Conjugation and Zygospore Cell Wall transfer to artificial pond water and increasing the light intensity to 184 µmol photons m−2 s−1. Characteristics in the Alpine Spirogyra This, however was only possible in early spring, suggesting that the isolated cultures had an inter- mirabilis (Zygnematophyceae, nal rhythm. -
The Chloroplast Rpl23 Gene Cluster of Spirogyra Maxima (Charophyceae) Shares Many Similarities with the Angiosperm Rpl23 Operon
Algae Volume 17(1): 59-68, 2002 The Chloroplast rpl23 Gene Cluster of Spirogyra maxima (Charophyceae) Shares Many Similarities with the Angiosperm rpl23 Operon Jungho Lee* and James R. Manhart Department of Biology, Texas A&M University, College Station, TX, 77843-3258, U.S.A. A phylogenetic affinity between charophytes and embryophytes (land plants) has been explained by a few chloro- plast genomic characters including gene and intron (Manhart and Palmer 1990; Baldauf et al. 1990; Lew and Manhart 1993). Here we show that a charophyte, Spirogyra maxima, has the largest operon of angiosperm chloroplast genomes, rpl23 operon (trnI-rpl23-rpl2-rps19-rpl22-rps3-rpl16-rpl14-rps8-infA-rpl36-rps11-rpoA) containing both embryophyte introns, rpl16.i and rpl2.i. The rpl23 gene cluster of Spirogyra contains a distinct eubacterial promoter sequence upstream of rpl23, which is the first gene of the green algal rpl23 gene cluster. This sequence is completely absent in angiosperms but is present in non-flowering plants. The results imply that, in the rpl23 gene cluster, early charophytes had at least two promoters, one upstream of trnI and another upstream of rpl23, which partially or completely lost its function in land plants. A comparison of gene clusters of prokaryotes, algal chloroplast DNAs and land plant cpDNAs indicated a loss of numerous genes in chlorophyll a+b eukaryotes. A phylogenetic analysis using presence/absence of genes and introns as characters produced trees with a strongly supported clade contain- ing chlorophyll a+b eukaryotes. Spirogyra and embryophytes formed a clade characterized by the loss of rpl5 and rps9 and the gain of trnI (CAU) and introns in rpl2 and rpl16. -
BARNES-DISSERTATION-2016.Pdf (1.557Mb)
ABSORPTION AND METABOLISM OF MANGO (MANGIFERA INDICA L.) GALLIC ACID AND GALLOYL GLYCOSIDES A Dissertation by RYAN CRISPEN BARNES Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Stephen Talcott Co-Chair of Committee, Susanne Talcott Committee Members, Nancy Turner Arul Jayaraman Head of Department, Boon Chew December 2016 Major Subject: Food Science and Technology Copyright 2016 Ryan Barnes ABSTRACT The composition, absorption, metabolism, and excretion of gallic acid, monogalloyl glucose, and gallotannins in mango (Mangifera indica L.) pulp were investigated. Each galloyl derivative was hypothesized to have a different rate of absorption, and their concentrations were compared in the pulp of five mango varieties. The cultivar Ataulfo was found to have the highest concentration of monogalloyl glucose and gallotannins while the cultivar Kent had the lowest. Enzymatic hydrolysis of gallotannins with tannase led to the characterization of six digalloyl glucoses and five trigalloyl glucoses that have the potential to be formed in the colon following gallotannin consumption. The bioaccessibility of galloyl derivatives was evaluated in both homogenized mango pulp and 0.65 mm3 cubes following in vitro digestion conditions. Monogalloyl glucose was found to be bioaccessible in both homogenized and cubed mango pulp. However, cubed mango pulp had a significantly higher amount of gallotannins still bound to the fruit following digestion. Gallic acid bioaccessibility significantly increased following digestion in both homogenized and cubed mango pulp, likely from hydrolysis of gallotannins. Additionally, for the first time, the absorption of monogalloyl glucose and gallic acid was investigated in both Caco-2 monolayer transport models and a porcine pharmacokinetic model with no significant differences found in their absorption or ability to produce phase II metabolites. -
Molecular Identification and Phylogenetic Relationship of Green Algae, Spirogyra Ellipsospora (Chlorophyta) Using ISSR and Rbcl
Saudi Journal of Biological Sciences (2014) xxx, xxx–xxx King Saud University Saudi Journal of Biological Sciences www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Molecular identification and phylogenetic relationship of green algae, Spirogyra ellipsospora (Chlorophyta) using ISSR and rbcL markers Pheravut Wongsawad *, Yuwadee Peerapornpisal Department of Biology, Faculty of Science, Chiang Mai University, Mueang 50200, Thailand Received 9 November 2013; revised 7 January 2014; accepted 14 January 2014 KEYWORDS Abstract Spirogyra is found in a wide range of habitats, including small stagnant water bodies, Spirogyra ellipsospora; rivers, and streams. Spirogyra ellipsospora is common in northern Thailand. Species identification rbcL; of the Spirogyra species based only on morphological characteristics can be difficult. A reliable ISSR markers; and accurate method is required to evaluate genetic variations. This study aims to apply molecular Molecular identification approaches for the identification of S. ellipsospora using microsatellites and rbcL markers. Based on DNA sequencing, the rbcL gene was sequenced and the data was analyzed using the BLAST (Basic Local Alignment Search Tool) program in the NCBI (National Center for Biotechnology Informa- tion) database. The sequence of S. ellipsospora from this study revealed definitive identity matches in the range of 99% for the consensus sequences of S. ellipsospora. The 10 primers of ISSR could be amplified by 92 amplification fragments. The DNA fragments and the rbcL sequence data grouped the Spirogyra specimens into two distinct clusters. ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University. 1. Introduction grows longer through normal cell division. There are more than 400 species of Spirogyra in the world. -
"Phycology". In: Encyclopedia of Life Science
Phycology Introductory article Ralph A Lewin, University of California, La Jolla, California, USA Article Contents Michael A Borowitzka, Murdoch University, Perth, Australia . General Features . Uses The study of algae is generally called ‘phycology’, from the Greek word phykos meaning . Noxious Algae ‘seaweed’. Just what algae are is difficult to define, because they belong to many different . Classification and unrelated classes including both prokaryotic and eukaryotic representatives. Broadly . Evolution speaking, the algae comprise all, mainly aquatic, plants that can use light energy to fix carbon from atmospheric CO2 and evolve oxygen, but which are not specialized land doi: 10.1038/npg.els.0004234 plants like mosses, ferns, coniferous trees and flowering plants. This is a negative definition, but it serves its purpose. General Features Algae range in size from microscopic unicells less than 1 mm several species are also of economic importance. Some in diameter to kelps as long as 60 m. They can be found in kinds are consumed as food by humans. These include almost all aqueous or moist habitats; in marine and fresh- the red alga Porphyra (also known as nori or laver), an water environments they are the main photosynthetic or- important ingredient of Japanese foods such as sushi. ganisms. They are also common in soils, salt lakes and hot Other algae commonly eaten in the Orient are the brown springs, and some can grow in snow and on rocks and the algae Laminaria and Undaria and the green algae Caulerpa bark of trees. Most algae normally require light, but some and Monostroma. The new science of molecular biology species can also grow in the dark if a suitable organic carbon has depended largely on the use of algal polysaccharides, source is available for nutrition. -
Formation of Β-Glucogallin, the Precursor of Ellagic Acid in Strawberry and Raspberry
Journal of Experimental Botany, Vol. 67, No. 8 pp. 2299–2308, 2016 doi:10.1093/jxb/erw036 Advance Access publication 16 February 2016 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) RESEARCH PAPER Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry Katja Schulenburg1, Antje Feller2, Thomas Hoffmann1, Johannes H. Schecker1, Stefan Martens2 and Wilfried Schwab1,* 1 Biotechnology of Natural Products, Technische Univeristät München, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany 2 Department of Food Quality and Nutrition, IASMA Research and Innovation Center, Fondazione Edmund Mach (FEM), Via E. Mach 1, Downloaded from 38010 San Michele all’Adige, (TN), Italy * Correspondence: [email protected] Received 29 September 2015; Accepted 18 January 2016 http://jxb.oxfordjournals.org/ Editor: Hideki Takahashi, Michigan State University Abstract Ellagic acid/ellagitannins are plant polyphenolic antioxidants that are synthesized from gallic acid and have been asso- ciated with a reduced risk of cancer and cardiovascular diseases. Here, we report the identification and characterization at Biblioteca Fondazione Edmund Mach on August 29, 2016 of five glycosyltransferases (GTs) from two genera of the Rosaceae family (Fragaria and Rubus; F.×ananassa FaGT2*, FaGT2, FaGT5, F. vesca FvGT2, and R. idaeus RiGT2) that catalyze the formation of 1-O-galloyl-β-D-glucopyranose (β-glucogallin) the precursor of ellagitannin biosynthesis. The enzymes showed substrate promiscuity as they formed glucose esters of a variety of (hydroxyl)benzoic and (hydroxyl)cinnamic acids. Determination of kinetic values and site- directed mutagenesis revealed amino acids that affected substrate preference and catalytic activity. -
Molecular Mechanisms of Tannin Accumulation in Rhus Galls And
www.nature.com/scientificreports OPEN Molecular mechanisms of tannin accumulation in Rhus galls and genes involved in plant-insect Received: 20 November 2017 Accepted: 11 June 2018 interactions Published: xx xx xxxx Hang Chen 1,2, Juan Liu1, Kai Cui1, Qin Lu1, Chao Wang1,3, Haixia Wu1, Zixiang Yang1, Weifeng Ding 1, Shuxia Shao1, Haiying Wang1, Xiaofei Ling1, Kirst King-Jones4 & Xiaoming Chen1,2 For galling aphids and their hosts, tannins are crucial for plant-insect interactions and for protecting the host plant from herbivory. Due to their peculiar chemical characteristics, tannins from plant galls have been used for medical and chemical purposes for more than 2000 years. In this study, hydrolyzable tannin concentrations in galls increased from gall initiation (38.34% on June 21) to maturation (74.79% on August 8), then decreased gradually thereafter (58.83% on October 12). We identifed a total of 81 genes (named as GTS1-81) with putative roles in gallotannin biosynthesis and 22 genes (TS1-22) in condensed tannin biosynthesis. We determined the expression profles of these genes by real-time PCR over the course of gall development. Multiple genes encoding 1-beta-D-glucosyl transferases were identifed, which may play a vital role in gallotannin accumulation in plant galls. This study is the frst attempt to examine the molecular basis for the regulation of tannin accumulation in insect gallnuts. The diferentially expressed genes we identifed may play important roles in both tannin biosynthesis and plant-insect interactions. Plants and insects have co-existed for more than 350 million years1, and in their interactions both have evolved strategies to overcome each other’s defense systems2,3. -
Recent Bloom of Filamentous Algae in Lake Baikal Is Caused by Spirogyra Link., 1820 of Local Origin
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.942979; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Recent bloom of filamentous algae in Lake Baikal is caused by Spirogyra Link., 1820 of local origin Elena Mincheva*1, Tatiana Peretolchina1, Tatyana Triboy1, Yrij Bukin1, Luybov Kravtsova1, Andrey Fedotov1, and Dmitry Sherbakov1,2 1Limnological institute SB RAS, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; 2 Irkutsk State University, Sukhe-Bator 5, 664003 Irkutsk, Russia * Author for correspondence: Elena Mincheva e-mail: [email protected] Abstract Molecular phylogeny inferred from rbcL nucleotide sequences obtained from the single sterile filaments of green algae collected around the perimeter of Lake Baikal indicates the polyphyletic origin of the representatives of genus Spirogyra Link., 1820 inhabiting the lake. The common ancestor of all Baikal Spirogyra dates back at least to 20 MYA. This roughly coincides with the age of continuously existing freshwater body in the confines of current Baikal. The descendants of this node include both Baikal and non-Baikal species and thus suggesting a complex history of multiple emigrations and immigrations. There is at least one major lineage of the Baikal Spirogyra in the phylogeny descending uninterruptedly from the common ancestor of all Spirogyra species found so far in the lake. The likely explanation is its permanent presence in the ecosystem. All this allows us to hypothesize that the current bloom is a spectacular but natural response of the Baikal ecosystem to the increased pollution. -
Identification of 13 Spirogyra Species (Zygnemataceae) by Traits of Sexual Reproduction Induced Under Laboratory Culture Conditions
www.nature.com/scientificreports OPEN Identifcation of 13 Spirogyra species (Zygnemataceae) by traits of sexual reproduction induced Received: 16 November 2018 Accepted: 23 April 2019 under laboratory culture conditions Published: xx xx xxxx Tomoyuki Takano1,6, Sumio Higuchi2, Hisato Ikegaya3, Ryo Matsuzaki4, Masanobu Kawachi4, Fumio Takahashi5 & Hisayoshi Nozaki 1 The genus Spirogyra is abundant in freshwater habitats worldwide, and comprises approximately 380 species. Species assignment is often difcult because identifcation is based on the characteristics of sexual reproduction in wild-collected samples and spores produced in the feld or laboratory culture. We developed an identifcation procedure based on an improved methodology for inducing sexual conjugation in laboratory-cultivated flaments. We tested the modifed procedure on 52 newly established and genetically diferent strains collected from diverse localities in Japan. We induced conjugation or aplanospore formation under controlled laboratory conditions in 15 of the 52 strains, which allowed us to identify 13 species. Two of the thirteen species were assignable to a related but taxonomically uncertain genus, Temnogyra, based on the unique characteristics of sexual reproduction. Our phylogenetic analysis demonstrated that the two Temnogyra species are included in a large clade comprising many species of Spirogyra. Thus, separation of Temnogyra from Spirogyra may be untenable, much as the separation of Sirogonium from Spirogyra is not supported by molecular analyses. Spirogyra Link (Zygnemataceae, Zygnematales) is a genus in the Class Zygnematophyceae (Conjugatophyceae), which is a component member of the Infrakingdom Streptophyta1,2. Spirogyra has long been included in high school biology curricula. Te genus is widely distributed in freshwater habitats including fowing water, perma- nent ponds and temporary pools3. -
Acer Rubrum) Species
University of Rhode Island DigitalCommons@URI Open Access Dissertations 2014 PHYTOCHEMICAL AND BIOLOGICAL INVESTIGATION OF GALLOTANNINS FROM RED MAPLE (ACER RUBRUM) SPECIES Hang Ma University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Ma, Hang, "PHYTOCHEMICAL AND BIOLOGICAL INVESTIGATION OF GALLOTANNINS FROM RED MAPLE (ACER RUBRUM) SPECIES" (2014). Open Access Dissertations. Paper 292. https://digitalcommons.uri.edu/oa_diss/292 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. PHYTOCHEMICAL AND BIOLOGICAL INVESTIGATION OF GALLOTANNINS FROM RED MAPLE (ACER RUBRUM) SPECIES BY HANG MA A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOMEDICAL AND PHARMACEUTICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2014 DOCTOR OF PHILOSOPHY DISSERTATION OF HANG MA APPROVED: Dissertation Committee: (Major Professor) Navindra Seeram David Worthen Brett Lucht Nasser Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2014 ABSTRACT This study investigated the phytochemical constituents, primarily gallotannins, present in a proprietary extract, namely MaplifaTM, from leaves of the red maple (Acer rubrum L.) species as well as their biological activities and mechanisms of action. Although the red maple species has been traditionally used as folk medicine by Native American Indians for numerous health benefits, the bioactive chemical constituents of the leaves of the red maple still remain unknown. This study carried out the identification of phytochemicals targeting gallotannins, a class of polyphenols, from red maple leaves by using various chromatographic separation techniques and spectroscopic approaches. -
New Records of the Genus Spirogyra (Zygnemataceae, Conjugatophyceae) in Korea
JOURNAL OF Research Paper ECOLOGY AND ENVIRONMENT http://www.jecoenv.org J. Ecol. Environ. 38(4): 611-618, 2015 New records of the genus Spirogyra (Zygnemataceae, Conjugatophyceae) in Korea Jee-Hwan Kim* Department of Biology, Chungbuk National University, Cheongju 28644, Korea Abstract Spirogyra is a zygnematalean green algal genus that is ubiquitous in a broad range of freshwater habitats throughout the world. Samples collected throughout Korea from October 2004 to July 2015 were examined using light microscopy. Mor- phological characteristics (e.g., size of vegetative cells, number of chloroplasts in each cell, type of end walls of adjacent cells, details of conjugation, shape of female gametangia, dimensions and shape of zygospores, color and ornamentation of median spore walls) were used as diagnostic characteristics for species identification. In this study, five species of Spi- rogyra (i.e., S. emilianensis Bonhomme, S. jaoensis Randhawa, S. pascheriana Czurda, S. weberi var. farlowii (Transeau) Petlovany, and S. weberi var. grevilleana (Hassall) Kirchner) were described as newly recorded in Korea. Key words: Conjugation, Spirogyra, taxonomy, Zygnematales, zygospore INTRODUCTION Spirogyra (Link 1820) is an unbranched filamentous 2015). Morphological features (e.g., size of vegetative cells, green algal genus that is ubiquitous in a broad range of number of chloroplasts per cell, end wall type of adjacent freshwater habitats, including roadside ditches, streams, cells, detailed characteristics of sexual reproduction and irrigation canals, marshes, and lakes (Graham et al. 2009). female gametangia, size and shape of zygospores, and The genus is one of the most ecologically important pri- ornamentation of mature zygospore walls) are used as mary producers in aquatic food webs (Stancheva et al.