Geometric Group Theory: an Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Group Theory: an Introduction Clara L¨oh Geometric Group Theory An Introduction this is a draft version! Clara L¨oh [email protected] http://www.mathematik.uni-regensburg.de/loeh/ Fakult¨atf¨urMathematik Universit¨atRegensburg 93040 Regensburg Germany All drawings by Clara L¨oh this is a draft version! f¨urA ∗ A this is a draft version! this is a draft version! About this book This book is an introduction into geometric group theory. It is certainly not an encyclopedic treatment of geometric group theory, but hopefully it will prepare and encourage the reader to take the next step and learn more ad- vanced aspects of geometric group theory. The core material of the book should be accessible to third year students, requiring only a basic acquaintance with group theory, metric spaces, and point-set topology. I tried to keep the level of the exposition as elementary as possible, preferring elementary proofs over arguments that require more machinery in topology or geometry. I refrained from adding complete proofs for some of the deeper theorems and instead included sketch proofs, high- lighting the key ideas and the view towards applications. However, many of the applications will need a more extensive background in algebraic topology, Riemannian geometry, and algebra. The exercises are rated in difficulty, from easy* over medium** to hard***. And very hard1* (usually, open problems of some sort). The core exercises should be accessible to third year students, but some of the exercises aim at applications in other fields and hence require a background in these fields. Moreover, there are exercise sections that develop additional theory in a series of exercises; these exercise sections are marked with +. This book covers slightly more than a one-semester course. Most of the material originates from various courses and seminars I taught at the Uni- versit¨atRegensburg: the geometric group theory courses (2010 and 2014), the seminar on amenable groups (2011), the course on linear groups and heights (2015, together with Walter Gubler), and an elementary course on geometry (2016). Most of the students had a background in real and complex analysis, in linear algebra, algebra, and some basic geometry of manifolds; some of the students also had experience in algebraic topology and Rieman- nian geometry. I would like to thank the participants of these courses and seminars for their interest in the subject and their patience. I am particularly grateful to Toni Annala, Matthias Blank, Luigi Ca- puti, Francesca Diana, Alexander Engel, Daniel Fauser, Stefan Friedl, Wal- ter Gubler, Micha lMarcinkowski, Andreas Thom, Johannes Witzig, and the anonymous referees for many valuable suggestions and corrections. This work was supported by the GRK 1692 Curvature, Cycles, and Cohomology (Uni- versit¨atRegensburg, funded by the DFG). Regensburg, September 2017 Clara L¨oh this is a draft version! this is a draft version! Contents 1 Introduction 1 Part I Groups 7 2 Generating groups 9 2.1 Review of the category of groups 10 2.1.1 Abstract groups: axioms 10 2.1.2 Concrete groups: automorphism groups 12 2.1.3 Normal subgroups and quotients 16 2.2 Groups via generators and relations 19 2.2.1 Generating sets of groups 19 2.2.2 Free groups 20 2.2.3 Generators and relations 25 2.2.4 Finitely presented groups 29 2.3 New groups out of old 31 2.3.1 Products and extensions 32 2.3.2 Free products and amalgamated free products 34 2.E Exercises 39 this is a draft version! viii Contents Part II Groups ! Geometry 51 3 Cayley graphs 53 3.1 Review of graph notation 54 3.2 Cayley graphs 57 3.3 Cayley graphs of free groups 61 3.3.1 Free groups and reduced words 62 3.3.2 Free groups ! trees 65 3.3.3 Trees ! free groups 66 3.E Exercises 68 4 Group actions 75 4.1 Review of group actions 76 4.1.1 Free actions 77 4.1.2 Orbits and stabilisers 80 4.1.3 Application: Counting via group actions 83 4.1.4 Transitive actions 84 4.2 Free groups and actions on trees 86 4.2.1 Spanning trees for group actions 87 4.2.2 Reconstructing a Cayley tree 88 4.2.3 Application: Subgroups of free groups are free 92 4.3 The ping-pong lemma 95 4.4 Free subgroups of matrix groups 97 4.4.1 Application: The group SL(2; Z) is virtually free 97 4.4.2 Application: Regular graphs of large girth 100 4.4.3 Application: The Tits alternative 102 4.E Exercises 105 5 Quasi-isometry 115 5.1 Quasi-isometry types of metric spaces 116 5.2 Quasi-isometry types of groups 122 5.2.1 First examples 125 5.3 Quasi-geodesics and quasi-geodesic spaces 127 5.3.1 (Quasi-)Geodesic spaces 127 5.3.2 Geodesification via geometric realisation of graphs 128 5.4 The Svarc-Milnorˇ lemma 132 5.4.1 Application: (Weak) commensurability 137 5.4.2 Application: Geometric structures on manifolds 139 5.5 The dynamic criterion for quasi-isometry 141 5.5.1 Application: Comparing uniform lattices 146 5.6 Quasi-isometry invariants 148 5.6.1 Quasi-isometry invariants 148 5.6.2 Geometric properties of groups and rigidity 150 5.6.3 Functorial quasi-isometry invariants 151 5.E Exercises 156 this is a draft version! Contents ix Part III Geometry of groups 165 6 Growth types of groups 167 6.1 Growth functions of finitely generated groups 168 6.2 Growth types of groups 170 6.2.1 Growth types 171 6.2.2 Growth types and quasi-isometry 172 6.2.3 Application: Volume growth of manifolds 176 6.3 Groups of polynomial growth 179 6.3.1 Nilpotent groups 180 6.3.2 Growth of nilpotent groups 181 6.3.3 Polynomial growth implies virtual nilpotence 182 6.3.4 Application: Virtual nilpotence is geometric 184 6.3.5 More on polynomial growth 185 6.3.6 Quasi-isometry rigidity of free Abelian groups 186 6.3.7 Application: Expanding maps of manifolds 187 6.4 Groups of uniform exponential growth 188 6.4.1 Uniform exponential growth 188 6.4.2 Uniform uniform exponential growth 190 6.4.3 The uniform Tits alternative 190 6.4.4 Application: The Lehmer conjecture 192 6.E Exercises 194 7 Hyperbolic groups 203 7.1 Classical curvature, intuitively 204 7.1.1 Curvature of plane curves 204 7.1.2 Curvature of surfaces in R3 205 7.2 (Quasi-)Hyperbolic spaces 208 7.2.1 Hyperbolic spaces 208 7.2.2 Quasi-hyperbolic spaces 210 7.2.3 Quasi-geodesics in hyperbolic spaces 213 7.2.4 Hyperbolic graphs 219 7.3 Hyperbolic groups 220 7.4 The word problem in hyperbolic groups 224 7.4.1 Application: \Solving" the word problem 225 7.5 Elements of infinite order in hyperbolic groups 229 7.5.1 Existence 229 7.5.2 Centralisers 235 7.5.3 Quasi-convexity 241 7.5.4 Application: Products and negative curvature 245 7.6 Non-positively curved groups 246 7.E Exercises 250 this is a draft version! x Contents 8 Ends and boundaries 257 8.1 Geometry at infinity 258 8.2 Ends 259 8.2.1 Ends of geodesic spaces 259 8.2.2 Ends of quasi-geodesic spaces 262 8.2.3 Ends of groups 264 8.3 Gromov boundary 267 8.3.1 Gromov boundary of quasi-geodesic spaces 267 8.3.2 Gromov boundary of hyperbolic spaces 269 8.3.3 Gromov boundary of groups 270 8.3.4 Application: Free subgroups of hyperbolic groups 271 8.4 Application: Mostow rigidity 277 8.E Exercises 280 9 Amenable groups 289 9.1 Amenability via means 290 9.1.1 First examples of amenable groups 290 9.1.2 Inheritance properties 292 9.2 Further characterisations of amenability 295 9.2.1 Følner sequences 295 9.2.2 Paradoxical decompositions 298 9.2.3 Application: The Banach-Tarski paradox 300 9.2.4 (Co)Homological characterisations of amenability 302 9.3 Quasi-isometry invariance of amenability 304 9.4 Quasi-isometry vs. bilipschitz equivalence 305 9.E Exercises 309 Part IV Reference material 317 A Appendix 319 A.1 The fundamental group 320 A.1.1 Construction and examples 320 A.1.2 Covering theory 322 A.2 Group (co)homology 325 A.2.1 Construction 325 A.2.2 Applications 327 A.3 The hyperbolic plane 329 A.3.1 Construction of the hyperbolic plane 329 A.3.2 Length of curves 330 A.3.3 Symmetry and geodesics 332 A.3.4 Hyperbolic triangles 341 A.3.5 Curvature 346 A.3.6 Other models 347 A.4 An invitation to programming 349 this is a draft version! Contents xi Bibliography 353 Index of notation 367 Index 373 this is a draft version! this is a draft version! 1 Introduction Groups are an abstract concept from algebra, formalising the study of sym- metries of various mathematical objects. What is geometric group theory? Geometric group theory investigates the interaction between algebraic and geometric properties of groups: • Can groups be viewed as geometric objects and how are geometric and algebraic properties of groups related? • More generally: On which geometric objects can a given group act in a reasonable way, and how are geometric properties of these geometric objects/actions related to algebraic properties of the group? How does geometric group theory work? Classically, group-valued invari- ants are associated with geometric objects, such as, e.g., the isometry group or the fundamental group.
Recommended publications
  • Affine Springer Fibers and Affine Deligne-Lusztig Varieties
    Affine Springer Fibers and Affine Deligne-Lusztig Varieties Ulrich G¨ortz Abstract. We give a survey on the notion of affine Grassmannian, on affine Springer fibers and the purity conjecture of Goresky, Kottwitz, and MacPher- son, and on affine Deligne-Lusztig varieties and results about their dimensions in the hyperspecial and Iwahori cases. Mathematics Subject Classification (2000). 22E67; 20G25; 14G35. Keywords. Affine Grassmannian; affine Springer fibers; affine Deligne-Lusztig varieties. 1. Introduction These notes are based on the lectures I gave at the Workshop on Affine Flag Man- ifolds and Principal Bundles which took place in Berlin in September 2008. There are three chapters, corresponding to the main topics of the course. The first one is the construction of the affine Grassmannian and the affine flag variety, which are the ambient spaces of the varieties considered afterwards. In the following chapter we look at affine Springer fibers. They were first investigated in 1988 by Kazhdan and Lusztig [41], and played a prominent role in the recent work about the “fun- damental lemma”, culminating in the proof of the latter by Ngˆo. See Section 3.8. Finally, we study affine Deligne-Lusztig varieties, a “σ-linear variant” of affine Springer fibers over fields of positive characteristic, σ denoting the Frobenius au- tomorphism. The term “affine Deligne-Lusztig variety” was coined by Rapoport who first considered the variety structure on these sets. The sets themselves appear implicitly already much earlier in the study of twisted orbital integrals. We remark that the term “affine” in both cases is not related to the varieties in question being affine, but rather refers to the fact that these are notions defined in the context of an affine root system.
    [Show full text]
  • Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
    Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory.
    [Show full text]
  • 18.703 Modern Algebra, Presentations and Groups of Small
    12. Presentations and Groups of small order Definition-Lemma 12.1. Let A be a set. A word in A is a string of 0 elements of A and their inverses. We say that the word w is obtained 0 from w by a reduction, if we can get from w to w by repeatedly applying the following rule, −1 −1 • replace aa (or a a) by the empty string. 0 Given any word w, the reduced word w associated to w is any 0 word obtained from w by reduction, such that w cannot be reduced any further. Given two words w1 and w2 of A, the concatenation of w1 and w2 is the word w = w1w2. The empty word is denoted e. The set of all reduced words is denoted FA. With product defined as the reduced concatenation, this set becomes a group, called the free group with generators A. It is interesting to look at examples. Suppose that A contains one element a. An element of FA = Fa is a reduced word, using only a and a−1 . The word w = aaaa−1 a−1 aaa is a string using a and a−1. Given any such word, we pass to the reduction w0 of w. This means cancelling as much as we can, and replacing strings of a’s by the corresponding power. Thus w = aaa −1 aaa = aaaa = a 4 = w0 ; where equality means up to reduction. Thus the free group on one generator is isomorphic to Z. The free group on two generators is much more complicated and it is not abelian.
    [Show full text]
  • Dynamics for Discrete Subgroups of Sl 2(C)
    DYNAMICS FOR DISCRETE SUBGROUPS OF SL2(C) HEE OH Dedicated to Gregory Margulis with affection and admiration Abstract. Margulis wrote in the preface of his book Discrete subgroups of semisimple Lie groups [30]: \A number of important topics have been omitted. The most significant of these is the theory of Kleinian groups and Thurston's theory of 3-dimensional manifolds: these two theories can be united under the common title Theory of discrete subgroups of SL2(C)". In this article, we will discuss a few recent advances regarding this missing topic from his book, which were influenced by his earlier works. Contents 1. Introduction 1 2. Kleinian groups 2 3. Mixing and classification of N-orbit closures 10 4. Almost all results on orbit closures 13 5. Unipotent blowup and renormalizations 18 6. Interior frames and boundary frames 25 7. Rigid acylindrical groups and circular slices of Λ 27 8. Geometrically finite acylindrical hyperbolic 3-manifolds 32 9. Unipotent flows in higher dimensional hyperbolic manifolds 35 References 44 1. Introduction A discrete subgroup of PSL2(C) is called a Kleinian group. In this article, we discuss dynamics of unipotent flows on the homogeneous space Γn PSL2(C) for a Kleinian group Γ which is not necessarily a lattice of PSL2(C). Unlike the lattice case, the geometry and topology of the associated hyperbolic 3-manifold M = ΓnH3 influence both topological and measure theoretic rigidity properties of unipotent flows. Around 1984-6, Margulis settled the Oppenheim conjecture by proving that every bounded SO(2; 1)-orbit in the space SL3(Z)n SL3(R) is compact ([28], [27]).
    [Show full text]
  • EMBEDDINGS of GROMOV HYPERBOLIC SPACES 1 Introduction
    GAFA, Geom. funct. anal. © Birkhiiuser Verlag, Basel 2000 Vol. 10 (2000) 266 - 306 1016-443X/00/020266-41 $ 1.50+0.20/0 I GAFA Geometric And Functional Analysis EMBEDDINGS OF GROMOV HYPERBOLIC SPACES M. BONK AND O. SCHRAMM Abstract It is shown that a Gromov hyperbolic geodesic metric space X with bounded growth at some scale is roughly quasi-isometric to a convex subset of hyperbolic space. If one is allowed to rescale the metric of X by some positive constant, then there is an embedding where distances are distorted by at most an additive constant. Another embedding theorem states that any 8-hyperbolic met­ ric space embeds isometrically into a complete geodesic 8-hyperbolic space. The relation of a Gromov hyperbolic space to its boundary is fur­ ther investigated. One of the applications is a characterization of the hyperbolic plane up to rough quasi-isometries. 1 Introduction The study of Gromov hyperbolic spaces has been largely motivated and dominated by questions about Gromov hyperbolic groups. This paper studies the geometry of Gromov hyperbolic spaces without reference to any group or group action. One of our main theorems is Embedding Theorem 1.1. Let X be a Gromov hyperbolic geodesic metric space with bounded growth at some scale. Then there exists an integer n such that X is roughly similar to a convex subset of hyperbolic n-space lHIn. The precise definitions appear in the body of the paper, but now we briefly discuss the meaning of the theorem. The condition of bounded growth at some scale is satisfied, for example, if X is a bounded valence graph, or a Riemannian manifold with bounded local geometry.
    [Show full text]
  • Arxiv:1612.03497V2 [Math.GR] 18 Dec 2017 2-Sphere Is Virtually a Kleinian Group
    BOUNDARIES OF DEHN FILLINGS DANIEL GROVES, JASON FOX MANNING, AND ALESSANDRO SISTO Abstract. We begin an investigation into the behavior of Bowditch and Gro- mov boundaries under the operation of Dehn filling. In particular we show many Dehn fillings of a toral relatively hyperbolic group with 2{sphere bound- ary are hyperbolic with 2{sphere boundary. As an application, we show that the Cannon conjecture implies a relatively hyperbolic version of the Cannon conjecture. Contents 1. Introduction 1 2. Preliminaries 5 3. Weak Gromov–Hausdorff convergence 12 4. Spiderwebs 15 5. Approximating the boundary of a Dehn filling 20 6. Proofs of approximation theorems for hyperbolic fillings 23 7. Approximating boundaries are spheres 39 8. Ruling out the Sierpinski carpet 42 9. Proof of Theorem 1.2 44 10. Proof of Corollary 1.4 45 Appendix A. δ{hyperbolic technicalities 46 References 50 1. Introduction One of the central problems in geometric group theory and low-dimensional topology is the Cannon Conjecture (see [Can91, Conjecture 11.34], [CS98, Con- jecture 5.1]), which states that a hyperbolic group whose (Gromov) boundary is a arXiv:1612.03497v2 [math.GR] 18 Dec 2017 2-sphere is virtually a Kleinian group. By a result of Bowditch [Bow98] hyperbolic groups can be characterized in terms of topological properties of their action on the boundary. The Cannon Conjecture is that (in case the boundary is S2) this topological action is in fact conjugate to an action by M¨obiustransformations. Rel- atively hyperbolic groups are a natural generalization of hyperbolic groups which are intended (among other things) to generalize the situation of the fundamental group of a finite-volume hyperbolic n-manifold acting on Hn.
    [Show full text]
  • An Overview of Topological Groups: Yesterday, Today, Tomorrow
    axioms Editorial An Overview of Topological Groups: Yesterday, Today, Tomorrow Sidney A. Morris 1,2 1 Faculty of Science and Technology, Federation University Australia, Victoria 3353, Australia; [email protected]; Tel.: +61-41-7771178 2 Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria 3086, Australia Academic Editor: Humberto Bustince Received: 18 April 2016; Accepted: 20 April 2016; Published: 5 May 2016 It was in 1969 that I began my graduate studies on topological group theory and I often dived into one of the following five books. My favourite book “Abstract Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups and the structure theory of locally compact abelian groups. Walter Rudin’s book “Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van Kampen Duality Theorem. Much gentler than these is “Introduction to Topological Groups” [3] by Taqdir Husain which has an introduction to topological group theory, Haar measure, the Peter-Weyl Theorem and Duality Theory. Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book belongs to that rare category of mathematical works that can truly be called classical - books which retain their significance for decades and exert a formative influence on the scientific outlook of whole generations of mathematicians”. The final book I mention from my graduate studies days is “Topological Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a solution of Hilbert’s fifth problem as well as a structure theory for locally compact non-abelian groups.
    [Show full text]
  • Some Remarks on Semigroup Presentations
    SOME REMARKS ON SEMIGROUP PRESENTATIONS B. H. NEUMANN Dedicated to H. S. M. Coxeter 1. Let a semigroup A be given by generators ai, a2, . , ad and defining relations U\ — V\yu2 = v2, ... , ue = ve between these generators, the uu vt being words in the generators. We then have a presentation of A, and write A = sgp(ai, . , ad, «i = vu . , ue = ve). The same generators with the same relations can also be interpreted as the presentation of a group, for which we write A* = gpOi, . , ad\ «i = vu . , ue = ve). There is a unique homomorphism <£: A—* A* which maps each generator at G A on the same generator at G 4*. This is a monomorphism if, and only if, A is embeddable in a group; and, equally obviously, it is an epimorphism if, and only if, the image A<j> in A* is a group. This is the case in particular if A<j> is finite, as a finite subsemigroup of a group is itself a group. Thus we see that A(j> and A* are both finite (in which case they coincide) or both infinite (in which case they may or may not coincide). If A*, and thus also Acfr, is finite, A may be finite or infinite; but if A*, and thus also A<p, is infinite, then A must be infinite too. It follows in particular that A is infinite if e, the number of defining relations, is strictly less than d, the number of generators. 2. We now assume that d is chosen minimal, so that A cannot be generated by fewer than d elements.
    [Show full text]
  • Amenable Actions, Free Products and a Fixed Point Property
    Submitted exclusively to the London Mathematical Society doi:10.1112/S0000000000000000 AMENABLE ACTIONS, FREE PRODUCTS AND A FIXED POINT PROPERTY Y. GLASNER and N. MONOD Abstract We investigate the class of groups admitting an action on a set with an invariant mean. It turns out that many free products admit interesting actions of that kind. A complete characterization of such free products is given in terms of a fixed point property. 1. Introduction 1.A. In the early 20th century, the construction of Lebesgue’s measure was followed by the discovery of the Banach-Hausdorff-Tarski paradoxes ([20], [16], [4], [30]; see also [18]). This prompted von Neumann [32] to study the following general question: Given a group G acting on a set X, when is there an invariant mean on X ? Definition 1.1. An invariant mean is a G-invariant map µ from the collection of subsets of X to [0, 1] such that (i) µ(A ∪ B) = µ(A) + µ(B) when A ∩ B = ∅ and (ii) µ(X) = 1. If such a mean exists, the action is called amenable. Remarks 1.2. (1) For the study of the classical paradoxes, one also considers normalisations other than (ii). (2) The notion of amenability later introduced by Zimmer [33] and its variants [3] are different, being in a sense dual to the above. 1.B. The thrust of von Neumann’s article was to show that the paradoxes, or lack thereof, originate in the structure of the group rather than the set X. He therefore proposed the study of amenable groups (then “meßbare Gruppen”), i.e.
    [Show full text]
  • On Just-Infiniteness of Locally Finite Groups and Their -Algebras
    Bull. Math. Sci. DOI 10.1007/s13373-016-0091-4 On just-infiniteness of locally finite groups and their C∗-algebras V. Belyaev1 · R. Grigorchuk2 · P. Shumyatsky3 Received: 14 August 2016 / Accepted: 23 September 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We give a construction of a family of locally finite residually finite groups with just-infinite C∗-algebra. This answers a question from Grigorchuk et al. (Just- infinite C∗-algebras. https://arxiv.org/abs/1604.08774, 2016). Additionally, we show that residually finite groups of finite exponent are never just-infinite. Keywords Just infinite groups · C*-algebras Mathematics Subject Classification 46L05 · 20F50 · 16S34 For Alex Lubotzky on his 60th birthday. Communicated by Efim Zelmanov. R. Grigorchuk was supported by NSA Grant H98230-15-1-0328. P. Shumyatsky was supported by FAPDF and CNPq. B P. Shumyatsky [email protected] V. Belyaev [email protected] R. Grigorchuk [email protected] 1 Institute of Mathematics and Mechanics, S. Kovalevskaja 16, Ekaterinburg, Russia 2 Department of Mathematics, Texas A&M University, College Station, TX, USA 3 Department of Mathematics, University of Brasília, 70910 Brasília, DF, Brazil 123 V. Belyaev et al. 1 Introduction A group is called just-infinite if it is infinite but every proper quotient is finite. Any infi- nite finitely generated group has just-infinite quotient. Therefore any question about existence of an infinite finitely generated group with certain property which is pre- served under homomorphic images can be reduced to a similar question in the class of just-infinite groups.
    [Show full text]
  • Lectures on Quasi-Isometric Rigidity Michael Kapovich 1 Lectures on Quasi-Isometric Rigidity 3 Introduction: What Is Geometric Group Theory? 3 Lecture 1
    Contents Lectures on quasi-isometric rigidity Michael Kapovich 1 Lectures on quasi-isometric rigidity 3 Introduction: What is Geometric Group Theory? 3 Lecture 1. Groups and Spaces 5 1. Cayley graphs and other metric spaces 5 2. Quasi-isometries 6 3. Virtual isomorphisms and QI rigidity problem 9 4. Examples and non-examples of QI rigidity 10 Lecture 2. Ultralimits and Morse Lemma 13 1. Ultralimits of sequences in topological spaces. 13 2. Ultralimits of sequences of metric spaces 14 3. Ultralimits and CAT(0) metric spaces 14 4. Asymptotic Cones 15 5. Quasi-isometries and asymptotic cones 15 6. Morse Lemma 16 Lecture 3. Boundary extension and quasi-conformal maps 19 1. Boundary extension of QI maps of hyperbolic spaces 19 2. Quasi-actions 20 3. Conical limit points of quasi-actions 21 4. Quasiconformality of the boundary extension 21 Lecture 4. Quasiconformal groups and Tukia's rigidity theorem 27 1. Quasiconformal groups 27 2. Invariant measurable conformal structure for qc groups 28 3. Proof of Tukia's theorem 29 4. QI rigidity for surface groups 31 Lecture 5. Appendix 33 1. Appendix 1: Hyperbolic space 33 2. Appendix 2: Least volume ellipsoids 35 3. Appendix 3: Different measures of quasiconformality 35 Bibliography 37 i Lectures on quasi-isometric rigidity Michael Kapovich IAS/Park City Mathematics Series Volume XX, XXXX Lectures on quasi-isometric rigidity Michael Kapovich Introduction: What is Geometric Group Theory? Historically (in the 19th century), groups appeared as automorphism groups of some structures: • Polynomials (field extensions) | Galois groups. • Vector spaces, possibly equipped with a bilinear form| Matrix groups.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]