Diving Disorders Not Retuiring Recompression Therapy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Features of Hemodynamics of Pulmonary Circulation During the Diving Reflex
FULL COMMUNICATIONS PHYSIOLOGY Features of hemodynamics of pulmonary circulation during the diving reflex Ekaterina Podyacheva1, Tatyana Zemlyanukhina1, Lavrentij Shadrin2, and Tatyana Baranova1 1Department of General Physiology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation 2Department of Physical Culture and Sports, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation Address correspondence and requests for materials to Ekaterina Podyacheva, [email protected] Abstract The adaptive cardiovascular reactions of the human diving reflex were studied. The diving reflex was activated by submerging a face in cold water under labo- ratory conditions. Forty volunteers (aged 18–24) were examined. ECG, arterial blood pressure (ABP) and central blood flow were recorded by the impedance rheography method in resting state, during diving simulation (DS) and after apnea. During DS there is a statistically significant decrease in the dicrotic in- dex (DCI), which reflects a decrease in the resistive vessel tone and as well as diastolic index (DSI), characterizing lung perfusion. A comparison of the latent periods (LP) of an increase in ABP and a drop in DCI showed that a decrease in pulmonary vascular tone develops faster than ABP begins to increase. The LP for lowering DCI is from 0.6 to 10 s; for an increase in ABP — from 6 to 30 s. A short LP for DCI and the absence of a correlation between a decrease in ABP and DCI suggests that a decrease in pulmonary vascular tone during DS occurs reflexively and independently of a change in ABP. Keywords: diving reflex, systemic circulation, pulmonary circulation, impedan- ce rheography, plethysmography. -
I AMYLIN MEDIATES BRAINSTEM
AMYLIN MEDIATES BRAINSTEM CONTROL OF HEART RATE IN THE DIVING REFLEX A Dissertation Submitted to The Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy By Fan Yang May, 2012 Examination committee members: Dr. Nae J Dun (advisor), Dept. of Pharmacology, Temple University Dr. Alan Cowan, Dept. of Pharmacology, Temple University Dr. Lee-Yuan Liu-Chen, Dept. of Pharmacology, Temple University Dr. Gabriela Cristina Brailoiu, Dept. of Pharmacology, Temple University Dr. Parkson Lee-Gau Chong, Dept. of Biochemistry, Temple University Dr. Hreday Sapru (external examiner), Depts. of Neurosciences, Neurosurgery & Pharmacology/Physiology, UMDNJ-NJMS. i © 2012 By Fan Yang All Rights Reserved ii ABSTRACT AMYLIN’S ROLE AS A NEUROPEPTIDE IN THE BRAINSTEM Fan Yang Doctor of Philosophy Temple University, 2012 Doctoral Advisory Committee Chair: Nae J Dun, Ph.D. Amylin, or islet amyloid polypeptide is a 37-amino acid member of the calcitonin peptide family. Amylin role in the brainstem and its function in regulating heart rates is unknown. The diving reflex is a powerful autonomic reflex, however no neuropeptides have been described to modulate its function. In this thesis study, amylin expression in the brainstem involving pathways between the trigeminal ganglion and the nucleus ambiguus was visualized and characterized using immunohistochemistry. Its functional role in slowing heart rate and also its involvement in the diving reflex were elucidated using stereotaxic microinjection, whole-cel patch-clamp, and a rat diving model. Immunohistochemical and tract tracing studies in rats revealed amylin expression in trigeminal ganglion cells, which also contained vesicular glutamate transporter 2 positive. -
Diving Disorders Retuiring Recompression Therapy
CHAPTER 20 'LYLQJ'LVRUGHUV5HTXLULQJ 5HFRPSUHVVLRQ7KHUDS\ 20-1 INTRODUCTION 20-1.1 Purpose. This chapter describes the diagnosis of diving disorders that either require recompression therapy or that may complicate recompression therapy. While you should adhere to the procedures as closely as possible, any mistakes or discrepancies shall be brought to the attention of NAVSEA immediately. There are instances where clear direction cannot be given; in these cases, contact the Diving Medical Officers at NEDU or NDSTC for clarification. Telephone numbers are listed in Volume 1, Appendix C. 20-1.2 Scope. This chapter is a reference for individuals trained in diving procedures. It is also directed to users with a wide range in medical expertise, from the fleet diver to the Diving Medical Officer. Certain treatment procedures require consultation with a Diving Medical Officer for safe and effective use. In preparing for any diving operation, it is mandatory that the dive team have a medical evacuation plan and know the location of the nearest or most accessible Diving Medical Officer and recompression chamber. The Diving Medical Personnel should be involved in predive planning and in training to deal with medical emergencies. Even if operators feel they know how to handle medical emergencies, a Diving Medical officer should always be consulted whenever possible. 20-2 ARTERIAL GAS EMBOLISM Arterial gas embolism, sometimes simply called gas embolism, is caused by entry of gas bubbles into the arterial circulation which then act as blood vessel obstruc- tions called emboli. These emboli are frequently the result of pulmonary barotrauma caused by the expansion of gas taken into the lungs while breathing under pressure and held in the lungs during ascent. -
Near Drowning
Near Drowning McHenry Western Lake County EMS Definition • Near drowning means the person almost died from not being able to breathe under water. Near Drownings • Defined as: Survival of Victim for more than 24* following submission in a fluid medium. • Leading cause of death in children 1-4 years of age. • Second leading cause of death in children 1-14 years of age. • 85 % are caused from falls into pools or natural bodies of water. • Male/Female ratio is 4-1 Near Drowning • Submersion injury occurs when a person is submerged in water, attempts to breathe, and either aspirates water (wet) or has laryngospasm (dry). Response • If a person has been rescued from a near drowning situation, quick first aid and medical attention are extremely important. Statistics • 6,000 to 8,000 people drown each year. Most of them are within a short distance of shore. • A person who is drowning can not shout for help. • Watch for uneven swimming motions that indicate swimmer is getting tired Statistics • Children can drown in only a few inches of water. • Suspect an accident if you see someone fully clothed • If the person is a cold water drowning, you may be able to revive them. Near Drowning Risk Factor by Age 600 500 400 300 Male Female 200 100 0 0-4 yr 5-9 yr 10-14 yr 15-19 Ref: Paul A. Checchia, MD - Loma Linda University Children’s Hospital Near Drowning • “Tragically 90% of all fatal submersion incidents occur within ten yards of safety.” Robinson, Ped Emer Care; 1987 Causes • Leaving small children unattended around bath tubs and pools • Drinking -
Model Document: Review Paper
6186ch05.qxd_lb 1/13/06 12:57 PM Page 130 130 5 / Writing a Review Paper Include title, author, course, The Role of Hypothermia and the Diving and date on title page for Reflex in Survival of Near-Drowning student papers. Accidents Do not number title page, but consider it page 1. Brian Martin Biology 281 April 17, 200- 6186ch05.qxd_lb 1/13/06 12:57 PM Page 131 Sample Review Paper 131 Hypothermia and the Diving Reflex 2 ABSTRACT State aims and scope; concisely This paper reviews the contributions summarize of hypothermia and the mammalian diving major points. reflex (MDR) to human survival of cold- water immersion incidents. The effect of the victim’s age on these processes is also examined. A major protective role of hypothermia comes from a reduced meta- bolic rate and thus lowered oxygen con- sumption by body tissues. Although hypothermia may produce fatal cardiac arrhythmias such as ventricular fibrilla- tion, it is also associated with brady- cardia and peripheral vasoconstriction, both of which enhance oxygen supply to the heart and brain. The MDR also results in bradycardia and reduced peripheral blood flow, as well as laryngospasm, which protects victims against rapid in- halation of water. Studies of drowning and near-drowning accidents involving children and adults suggest that victim survival depends on the presence of both hypothermia and the MDR, as neither alone can provide adequate cerebral protection during long periods of hypoxia. Future lines of research are suggested and re- Introduce lated to improved patient care. topic; give paper’s aims INTRODUCTION and scope. -
Pathophysiological and Diagnostic Implications of Cardiac Biomarkers
Pathophysiological and diagnostic implications of cardiac biomarkers and antidiuretic hormone release in distinguishing immersion pulmonary edema from decompression sickness Article Published Version Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 Open access Louge, P., Coulange, M., Beneton, F., Gempp, E., Le Pennetier, O., Algoud, M., Dubourg, L., Naibo, P., Marlinge, M., Michelet, P., Vairo, D., Kipson, N., Kerbaul, F., Jammes, Y., Jones, I. M., Steinberg, J.-G., Ruf, J., Guieu, R., Boussuges, A. and Fenouillet, E. (2016) Pathophysiological and diagnostic implications of cardiac biomarkers and antidiuretic hormone release in distinguishing immersion pulmonary edema from decompression sickness. Medicine, 95 (26). e4060. ISSN 0025-7974 doi: https://doi.org/10.1097/MD.0000000000004060 Available at http://centaur.reading.ac.uk/66136/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1097/MD.0000000000004060 Publisher: Lippincott, Williams & Wilkins All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online ® Observational Study Medicine OPEN Pathophysiological and diagnostic implications of cardiac biomarkers and antidiuretic hormone release in distinguishing immersion pulmonary edema from decompression sickness Pierre Louge (MD)a, Mathieu Coulange (MD)b,c, Frederic Beneton (MD)b, Emmanuel Gempp (MD)a, Olivier Le Pennetier (MSc)c, Maxime Algoud (MSc)d, Lorene Dubourg (MSc)d, Pierre Naibo (MSc)d, Marion Marlinge (MSc)d, Pierre Michelet (MD)c, Donato Vairo (MSc)c, Nathalie Kipson (MSc)c, François Kerbaul (MD)c, Yves Jammes (MD)c, Ian M. -
Question Knowledge Test 1. a Nurse Calls You to the Bedside of a 9 Year
Question Knowledge Test 1. A nurse calls you to the bedside of a 9 year old boy with a heart rate in the 50s. He was just admitted to the floor after being treated for status epilepticus with nasal ativan and has been loaded with Keppra. His blood pressure is 85/55, and he is sleeping. Physical examination reveals good pulses and normal capillary refill. His neurologic examination is within normal limits. EKG reveals sinus bradycardia. What should you do? A. Draw a TSH, T4 B. Reassure and continue to clinically monitor C. Give epinephrine’ D. Give Atropine E. Transcutaneously pace to a ventricular rate of 80 beats per minute. 2. You are called to the bedside of a 3 kg newborn infant who has a heart rate to the 200’s. He clinically appears well, afebrile with a respiratory rate of 40 and a blood pressure that of 70/50. He is breathing normally clear lung fields, normal heart sounds, and a capillary refill less than 2 seconds. An EKG shows a narrow QRS tachycardia with 1:1 conduction with retrograde P waves. What should you do next? A. Synchronized cardioversion at 1.5 Joules with a biphasic device. B. Synchronized cardioversion at 3 Joules with a biphasic device C. Adenosine given at 0.3 mg IV rapid bolus D. Apply ice on face for 10 seconds E. Start Amiodarone infusion with a 15 mg load over 30 minutes Pretest 3. You are called to the bedside of a patient with a heart rate of 250 bpm who looks comfortable. -
Underwater Medicine
TEMPLE UNIVERSITY COURSE REGISTRATION FORM UNDERWATER MEDICINE 2016 UNDERWATER MEDICINE 2016 A training program in diving medicine designed with special emphasis on diagnosis and treatment of diving disorders, REGISTRATION FEE: $650.00** fitness for diving and hyperbaric oxygen therapy. This $750 after Dec 30, 2015 program is certified for 25 AMA PRA category 1 credits $850 for registrants not in the UMA package through Temple University School of Medicine. The program Fee includes: Lectures and Course Materials. is offered in collaboration with the Undersea and Hyperbaric Medical Society. Enclosed is my check in the amount of $650.00 for registration. Make checks payable to Underwater Medicine Associates. presents the COURSE DESCRIPTION Return to: Medical evaluation of a diver or diving candidate demands that the physician have a knowledge of the unique physical Underwater Medicine Associates 42 nd Annual qualifications needed for this sport. In this year’s program, P.O. BOX 481 we will pay special attention to diagnosing diving disorders, Bryn Mawr, PA 19010 and will provide a combination of didactic lectures and case examples with interactive discussions to enhance learning **Course Registration Fee and Hotel Registration Deposit can related to diagnosis of diving disorders, assessment for fitness be combined on one check, or paid by credit card UNDERWATER to dive, marine injuries and toxicity and hyperbaric oxygen therapy. Upon completion of the course, participants should have a general knowledge of diving medicine and medical NAME_______________________________DEGREE______ -
Recompression Therapy
CHAPTER 21 5HFRPSUHVVLRQ7KHUDS\ 21-1 INTRODUCTION 21-1.1 Purpose. This chapter covers recompression therapy. Recompression therapy is indicated for treating omitted decompression, decompression sickness, and arterial gas embolism. 21-1.2 Scope. The procedures outlined in this chapter are to be performed only by personnel properly trained to use them. Because these procedures cover symptoms ranging from pain to life-threatening disorders, the degree of medical expertise necessary to carry out treatment properly will vary. Certain procedures, such as starting IV fluid lines and inserting chest tubes, require special training and should not be attempted by untrained individuals. Treatment tables can be executed without consulting a Diving Medical Officer (DMO), although a DMO should always be contacted at the earliest possible opportunity. Four treatment tables require special consideration: Treatment Table 4 is a long, arduous table that requires constant evaluation of the stricken diver. Treatment Table 7 and Treatment Table 8 allow prolonged treatments for severely ill patients based on the patient’s condition throughout the treatment. Treatment Table 9 can only be prescribed by a Diving Medical Officer. 21-1.3 Diving Supervisor’s Responsibilities. Experience has shown that symptoms of severe decompression sickness or arterial gas embolism may occur following seemingly normal dives. This fact, combined with the many operational scenarios under which diving is conducted, means that treatment of severely ill individuals will be required occasionally when qualified medical help is not immediately on scene. Therefore, it is the Diving Supervisor’s responsibility to ensure that every member of the diving team: 1. Is thoroughly familiar with all recompression procedures. -
SIMULATED HUMAN DIVING and HEART RATE: MAKING the MOST of the DIVING RESPONSE AS a LABORATORY EXERCISE Sara M
SIMULATED HUMAN DIVING AND HEART RATE: MAKING THE MOST OF THE DIVING RESPONSE AS A LABORATORY EXERCISE Sara M. Hiebert and Elliot Burch Advan Physiol Educ 27:130-145, 2003. doi:10.1152/advan.00045.2002 You might find this additional information useful... This article cites 15 articles, 3 of which you can access free at: http://ajpadvan.physiology.org/cgi/content/full/27/3/130#BIBL Medline items on this article's topics can be found at http://highwire.stanford.edu/lists/artbytopic.dtl on the following topics: Pharmacology .. Heart Diseases (Drug Development) Physiology .. Exertion Medicine .. Fitness (Physical Activity) Medicine .. Exercise Medicine .. Bradycardia Downloaded from Physiology .. Humans Updated information and services including high-resolution figures, can be found at: http://ajpadvan.physiology.org/cgi/content/full/27/3/130 Additional material and information about Advances in Physiology Education can be found at: http://www.the-aps.org/publications/advan ajpadvan.physiology.org This information is current as of January 10, 2007 . on January 10, 2007 Advances in Physiology Education is dedicated to the improvement of teaching and learning physiology, both in specialized courses and in the broader context of general biology education. It is published four times a year in March, June, September and December by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2005 by the American Physiological Society. ISSN: 1043-4046, ESSN: 1522-1229. Visit our website at http://www.the-aps.org/. T E A C H I N G I N T H E L A B O R A T O R Y SIMULATED HUMAN DIVING AND HEART RATE: MAKING THE MOST OF THE DIVING RESPONSE AS A LABORATORY EXERCISE Sara M. -
Cold Water Gasp Cold Shock Response
Cold Water Gasp In the photo in the upper right hand corner you can see the gasp by Jimmy Fallon (man in the suit) from 36.5°F cold water hitting his face. Practice helps—triathletes & swimmers who practice getting into cold water, and whitewater kayakers & canoers who roll their boats in cold water, experience the changes the body makes. They know what's coming, they know it will settle out, and they know they can make the adjustments to hold their breath or control their breathing. If you are planning on swimming in cold water, try breast stroking a few times to start the process. When you’re ready, put your entire face in knowing that it will take a bit for your body to settle out and adjust. Cold water gasp, also known as the gasp reflex, torso reflex, or cold water inspiratory gasp, occurs when there is a sudden immersion of a person's face in cold water which causes an automatic gasp to breath in a large volume of air. This is a part of an artifact of human evolution called the mammalian diving reflex exhibited in aquatic mammals (seals, otters, dolphins, wales) which optimizes respiration to allow staying underwater for extended periods of times. Diving birds such as penguins and cormorants have a similar diving reflex. Every animal's diving reflex is triggered specifically by cold water contacting the face of a mammal. Water that is warmer than 70ºF does not cause the reflex, and neither does submersion of other body parts. If this sudden gasp for air happens when you are submerged (boat capsizing or a fall through thin ice) or when you get doused by a large wave of cold water, you will inhale water, not air. -
Diving Medicine for Scuba Divers 4Th Edition 2012 Published by Carl Edmonds Ocean Royale, 11/69-74 North Steyne Manly, NSW, 2095 Australia [email protected]
!"#"$%&'()"*"$(&+,-&.*/01& !"#(-2& & & 345&6)"4",$& 789:& & ;-((&<$4(-$(4&6)"4",$& & ===>)"#"$%?()"*"$(>"$+,& 5th Edition, 2013 Diving Medicine for Scuba Divers 4th edition 2012 Published by Carl Edmonds Ocean Royale, 11/69-74 North Steyne Manly, NSW, 2095 Australia [email protected] First edition, October 1992 Second edition, April 1997 Third edition January 2010 Forth edition January 2012 Fifth edition January 2013 National Library of Australia Catalogue 1. Submarine Medicine 2. Scuba Diving Injuries 3. Diving – physiological aspects Copyright: Carl Edmonds Title 1 of 1 - Diving Medicine for Scuba Divers ISBN: [978-0-646-52726-0] To download a free copy of this text, go to www.divingmedicine.info ! ! FOREWARD ! ! ! "#$%$&'! (&)! *+,(-+(.$/!01)$/$&1"2!$&!$.3!.4$5)!(&)!4$'467!51381/.1)!1)$.$9&2!4(3! 859%$)1)! (! /95&153.9&1! 9:! ;&9<61)'1! :95! .41! )$%$&'! =1)$/(6! 859:133$9&(6>! ?9<2! "#$%$&'! 01)$/$&1! @! :95! */+,(! #$%153"! $3! (! /9&)1&31)2! 3$=86$:$1)! (&)! 6$'4.15! 8+,6$/(.$9&! :95! .41! '1&15(6! )$%$&'! 898+6(.$9&>! A41! (+.4953! @! #53! B)=9&)32! 0/C1&D$1! (&)! A49=(32! 4(%1! )9&1! (&! 1E/1661&.! F9,! 9:! 859%$)$&'! (! /9=85141&3$%12! +31:+6!(&)!+8!.9!)(.1!5139+5/1!,(31!:95!.41!)$%15!$&!.41!:$16)>! ! A41!85131&.(.$9&!9:!.41!=(.15$(6!51:61/.3!.41!:(/.!.4(.!.41!(+.4953!(51!1E815$1&/1)! )$%153! (3! <166! (3! 381/$(6$3.3! $&! )$%$&'! =1)$/$&1>! A41$5! .4$&67! )$3'+$31)! 31&31! 9:! 4+=9+5! $3! 51:61/.1)! .459+'49+.! .41! .1E.! $&! 1=84(3$3$&'! $=895.(&.! $33+13! (&)! 9//(3$9&(667!F+3.!6$'4.1&$&'!.41!(/()1=$/!69()$&'!9&!.41!51()15>!A41$5!.51(.=1&.!9:!