Evolution of Photosynthesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RED ALGAE · RHODOPHYTA Rhodophyta Are Cosmopolitan, Found from the Artic to the Tropics
RED ALGAE · RHODOPHYTA Rhodophyta are cosmopolitan, found from the artic to the tropics. Although they grow in both marine and fresh water, 98% of the 6,500 species of red algae are marine. Most of these species occur in the tropics and sub-tropics, though the greatest number of species is temperate. Along the California coast, the species of red algae far outnumber the species of green and brown algae. In temperate regions such as California, red algae are common in the intertidal zone. In the tropics, however, they are mostly subtidal, growing as epiphytes on seagrasses, within the crevices of rock and coral reefs, or occasionally on dead coral or sand. In some tropical waters, red algae can be found as deep as 200 meters. Because of their unique accessory pigments (phycobiliproteins), the red algae are able to harvest the blue light that reaches deeper waters. Red algae are important economically in many parts of the world. For example, in Japan, the cultivation of Pyropia is a multibillion-dollar industry, used for nori and other algal products. Rhodophyta also provide valuable “gums” or colloidal agents for industrial and food applications. Two extremely important phycocolloids are agar (and the derivative agarose) and carrageenan. The Rhodophyta are the only algae which have “pit plugs” between cells in multicellular thalli. Though their true function is debated, pit plugs are thought to provide stability to the thallus. Also, the red algae are unique in that they have no flagellated stages, which enhance reproduction in other algae. Instead, red algae has a complex life cycle, with three distinct stages. -
Red Algae (Bangia Atropurpurea) Ecological Risk Screening Summary
Red Algae (Bangia atropurpurea) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2014 Revised, March 2016, September 2017, October 2017 Web Version, 6/25/2018 1 Native Range and Status in the United States Native Range From NOAA and USGS (2016): “Bangia atropurpurea has a widespread amphi-Atlantic range, which includes the Atlantic coast of North America […]” Status in the United States From Mills et al. (1991): “This filamentous red alga native to the Atlantic Coast was observed in Lake Erie in 1964 (Lin and Blum 1977). After this sighting, records for Lake Ontario (Damann 1979), Lake Michigan (Weik 1977), Lake Simcoe (Jackson 1985) and Lake Huron (Sheath 1987) were reported. It has become a major species of the littoral flora of these lakes, generally occupying the littoral zone with Cladophora and Ulothrix (Blum 1982). Earliest records of this algae in the basin, however, go back to the 1940s when Smith and Moyle (1944) found the alga in Lake Superior tributaries. Matthews (1932) found the alga in Quaker Run in the Allegheny drainage basin. Smith and 1 Moyle’s records must have not resulted in spreading populations since the alga was not known in Lake Superior as of 1987. Kishler and Taft (1970) were the most recent workers to refer to the records of Smith and Moyle (1944) and Matthews (1932).” From NOAA and USGS (2016): “Established where recorded except in Lake Superior. The distribution in Lake Simcoe is limited (Jackson 1985).” From Kipp et al. (2017): “Bangia atropurpurea was first recorded from Lake Erie in 1964. During the 1960s–1980s, it was recorded from Lake Huron, Lake Michigan, Lake Ontario, and Lake Simcoe (part of the Lake Ontario drainage). -
Algae & Marine Plants of Point Reyes
Algae & Marine Plants of Point Reyes Green Algae or Chlorophyta Genus/Species Common Name Acrosiphonia coalita Green rope, Tangled weed Blidingia minima Blidingia minima var. vexata Dwarf sea hair Bryopsis corticulans Cladophora columbiana Green tuft alga Codium fragile subsp. californicum Sea staghorn Codium setchellii Smooth spongy cushion, Green spongy cushion Trentepohlia aurea Ulva californica Ulva fenestrata Sea lettuce Ulva intestinalis Sea hair, Sea lettuce, Gutweed, Grass kelp Ulva linza Ulva taeniata Urospora sp. Brown Algae or Ochrophyta Genus/Species Common Name Alaria marginata Ribbon kelp, Winged kelp Analipus japonicus Fir branch seaweed, Sea fir Coilodesme californica Dactylosiphon bullosus Desmarestia herbacea Desmarestia latifrons Egregia menziesii Feather boa Fucus distichus Bladderwrack, Rockweed Haplogloia andersonii Anderson's gooey brown Laminaria setchellii Southern stiff-stiped kelp Laminaria sinclairii Leathesia marina Sea cauliflower Melanosiphon intestinalis Twisted sea tubes Nereocystis luetkeana Bull kelp, Bullwhip kelp, Bladder wrack, Edible kelp, Ribbon kelp Pelvetiopsis limitata Petalonia fascia False kelp Petrospongium rugosum Phaeostrophion irregulare Sand-scoured false kelp Pterygophora californica Woody-stemmed kelp, Stalked kelp, Walking kelp Ralfsia sp. Silvetia compressa Rockweed Stephanocystis osmundacea Page 1 of 4 Red Algae or Rhodophyta Genus/Species Common Name Ahnfeltia fastigiata Bushy Ahnfelt's seaweed Ahnfeltiopsis linearis Anisocladella pacifica Bangia sp. Bossiella dichotoma Bossiella -
Biology and Systematics of Heterokont and Haptophyte Algae1
American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed. -
Predatory Flagellates – the New Recently Discovered Deep Branches of the Eukaryotic Tree and Their Evolutionary and Ecological Significance
Protistology 14 (1), 15–22 (2020) Protistology Predatory flagellates – the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance Denis V. Tikhonenkov Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia | Submitted March 20, 2020 | Accepted April 6, 2020 | Summary Predatory protists are poorly studied, although they are often representing important deep-branching evolutionary lineages and new eukaryotic supergroups. This short review/opinion paper is inspired by the recent discoveries of various predatory flagellates, which form sister groups of the giant eukaryotic clusters on phylogenetic trees, and illustrate an ancestral state of one or another supergroup of eukaryotes. Here we discuss their evolutionary and ecological relevance and show that the study of such protists may be essential in addressing previously puzzling evolutionary problems, such as the origin of multicellular animals, the plastid spread trajectory, origins of photosynthesis and parasitism, evolution of mitochondrial genomes. Key words: evolution of eukaryotes, heterotrophic flagellates, mitochondrial genome, origin of animals, photosynthesis, predatory protists, tree of life Predatory flagellates and diversity of eu- of the hidden diversity of protists (Moon-van der karyotes Staay et al., 2000; López-García et al., 2001; Edg- comb et al., 2002; Massana et al., 2004; Richards The well-studied multicellular animals, plants and Bass, 2005; Tarbe et al., 2011; de Vargas et al., and fungi immediately come to mind when we hear 2015). In particular, several prevailing and very abun- the term “eukaryotes”. However, these groups of dant ribogroups such as MALV, MAST, MAOP, organisms represent a minority in the real diversity MAFO (marine alveolates, stramenopiles, opistho- of evolutionary lineages of eukaryotes. -
Coral Reef Algae
Coral Reef Algae Peggy Fong and Valerie J. Paul Abstract Benthic macroalgae, or “seaweeds,” are key mem- 1 Importance of Coral Reef Algae bers of coral reef communities that provide vital ecological functions such as stabilization of reef structure, production Coral reefs are one of the most diverse and productive eco- of tropical sands, nutrient retention and recycling, primary systems on the planet, forming heterogeneous habitats that production, and trophic support. Macroalgae of an astonish- serve as important sources of primary production within ing range of diversity, abundance, and morphological form provide these equally diverse ecological functions. Marine tropical marine environments (Odum and Odum 1955; macroalgae are a functional rather than phylogenetic group Connell 1978). Coral reefs are located along the coastlines of comprised of members from two Kingdoms and at least over 100 countries and provide a variety of ecosystem goods four major Phyla. Structurally, coral reef macroalgae range and services. Reefs serve as a major food source for many from simple chains of prokaryotic cells to upright vine-like developing nations, provide barriers to high wave action that rockweeds with complex internal structures analogous to buffer coastlines and beaches from erosion, and supply an vascular plants. There is abundant evidence that the his- important revenue base for local economies through fishing torical state of coral reef algal communities was dominance and recreational activities (Odgen 1997). by encrusting and turf-forming macroalgae, yet over the Benthic algae are key members of coral reef communities last few decades upright and more fleshy macroalgae have (Fig. 1) that provide vital ecological functions such as stabili- proliferated across all areas and zones of reefs with increas- zation of reef structure, production of tropical sands, nutrient ing frequency and abundance. -
The Apicoplast: a Review of the Derived Plastid of Apicomplexan Parasites
Curr. Issues Mol. Biol. 7: 57-80. Online journalThe Apicoplastat www.cimb.org 57 The Apicoplast: A Review of the Derived Plastid of Apicomplexan Parasites Ross F. Waller1 and Geoffrey I. McFadden2,* way to apicoplast discovery with studies of extra- chromosomal DNAs recovered from isopycnic density 1Botany, University of British Columbia, 3529-6270 gradient fractionation of total Plasmodium DNA. This University Boulevard, Vancouver, BC, V6T 1Z4, Canada group recovered two DNA forms; one a 6kb tandemly 2Plant Cell Biology Research Centre, Botany, University repeated element that was later identifed as the of Melbourne, 3010, Australia mitochondrial genome, and a second, 35kb circle that was supposed to represent the DNA circles previously observed by microscopists (Wilson et al., 1996b; Wilson Abstract and Williamson, 1997). This molecule was also thought The apicoplast is a plastid organelle, homologous to to be mitochondrial DNA, and early sequence data of chloroplasts of plants, that is found in apicomplexan eubacterial-like rRNA genes supported this organellar parasites such as the causative agents of Malaria conclusion. However, as the sequencing effort continued Plasmodium spp. It occurs throughout the Apicomplexa a new conclusion, that was originally embraced with and is an ancient feature of this group acquired by the some awkwardness (“Have malaria parasites three process of endosymbiosis. Like plant chloroplasts, genomes?”, Wilson et al., 1991), began to emerge. apicoplasts are semi-autonomous with their own genome Gradually, evermore convincing character traits of a and expression machinery. In addition, apicoplasts import plastid genome were uncovered, and strong parallels numerous proteins encoded by nuclear genes. These with plastid genomes from non-photosynthetic plants nuclear genes largely derive from the endosymbiont (Epifagus virginiana) and algae (Astasia longa) became through a process of intracellular gene relocation. -
Functional Group-Specific Traits Drive Phytoplankton Dynamics in the Oligotrophic Ocean
Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean Harriet Alexandera,b, Mónica Roucoc, Sheean T. Haleyc, Samuel T. Wilsond, David M. Karld,1, and Sonya T. Dyhrmanc,1 aMIT–WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA 02139; bBiology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; cDepartment of Earth and Environmental Sciences, Lamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964; and dDaniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawaii, Honolulu, HI 96822 Contributed by David M. Karl, September 15, 2015 (sent for review June 29, 2015; reviewed by Kay D. Bidle and Adrian Marchetti) A diverse microbial assemblage in the ocean is responsible for Marine phytoplankton accounts for roughly half of global nearly half of global primary production. It has been hypothesized primary production (6). Although central to balancing global and experimentally demonstrated that nutrient loading can stimulate biogeochemical models of gross primary production (7), knowl- blooms of large eukaryotic phytoplankton in oligotrophic systems. edge of the biogeochemical drivers that govern the dynamics of Although central to balancing biogeochemical models, knowledge of these bloom-forming organisms in oligotrophic systems is lim- the metabolic traits that govern the dynamics of these bloom-forming ited. Nutrient environments are integral to the structuring of phytoplankton is limited. We used eukaryotic metatranscriptomic phytoplankton communities (8–10) and initiating blooms. Orig- techniques to identify the metabolic basis of functional group-specific inally thought to be a stable low-fluctuating habitat, long-term traits that may drive the shift between net heterotrophy and monitoring at Station ALOHA has demonstrated that within the autotrophy in the oligotrophic ocean. -
Brown Algae and 4) the Oomycetes (Water Molds)
Protista Classification Excavata The kingdom Protista (in the five kingdom system) contains mostly unicellular eukaryotes. This taxonomic grouping is polyphyletic and based only Alveolates on cellular structure and life styles not on any molecular evidence. Using molecular biology and detailed comparison of cell structure, scientists are now beginning to see evolutionary SAR Stramenopila history in the protists. The ongoing changes in the protest phylogeny are rapidly changing with each new piece of evidence. The following classification suggests 4 “supergroups” within the Rhizaria original Protista kingdom and the taxonomy is still being worked out. This lab is looking at one current hypothesis shown on the right. Some of the organisms are grouped together because Archaeplastida of very strong support and others are controversial. It is important to focus on the characteristics of each clade which explains why they are grouped together. This lab will only look at the groups that Amoebozoans were once included in the Protista kingdom and the other groups (higher plants, fungi, and animals) will be Unikonta examined in future labs. Opisthokonts Protista Classification Excavata Starting with the four “Supergroups”, we will divide the rest into different levels called clades. A Clade is defined as a group of Alveolates biological taxa (as species) that includes all descendants of one common ancestor. Too simplify this process, we have included a cladogram we will be using throughout the SAR Stramenopila course. We will divide or expand parts of the cladogram to emphasize evolutionary relationships. For the protists, we will divide Rhizaria the supergroups into smaller clades assigning them artificial numbers (clade1, clade2, clade3) to establish a grouping at a specific level. -
727-735 Issn 2077-4613
Middle East Journal of Applied Volume : 08 | Issue :03 |July-Sept.| 2018 Sciences Pages: 727-735 ISSN 2077-4613 Antifungal bio-efficacy of the red algae Gracilaria confervoides extracts against three pathogenic fungi of cucumber plant Amira Sh. Soliman1, A.Y. Ahmed2, Siham E. Abdel-Ghafour2, Mostafa M. El-Sheekh3 and Hassan M. Sobhy1 1Natural Resources Department, Institute of African Research and Studies, Cairo University, Giza, Egypt. 2Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt. 3Botany Department, Faculty of Science, Tanta University, Tanta, Egypt. Received: 07 May 2018 / Accepted: 26 June 2018 / Publication date: 15 July 2018 ABSTRACT In this study, the potential of the macroalgae Gracilaria confervoides red algae extracts and powder were evaluated as a bioagent source of the three soil-borne pathogenic fungi of cucumber namely; Rhizoctonia solani, Fusarium solani and Macrophomina phaseolina in Egypt. Five organic solvents; Ethyl acetate, Methanol, Acetone, Benzene, and Chloroform, in addition to water were used for the extraction to evaluate their bioeffecinecy on mycelium growth reduction of the three fungal pathogens on potato dextrose agar (PDA). Radial growth reduction of the pathogens was noticed in R. solani and F. solani with all solvents and water extraction. In case of the fungus M. phaseolinae all solvents and water extractions malformatted the fungal growth (aerial mycelium and no microsclerotia). The highest reduction (100%) obtained on R. solani when chloroform extraction was used followed by ethyl acetate extraction (50%). In the greenhouse experiment, macroalgae powder was used to evaluate its effect on disease incidence which indicated about (70%) decrease for diseases. The highest total yield (133.2g) was obtained from plants infected with M. -
A Single Origin of the Peridinin- and Fucoxanthin- Containing Plastids in Dinoflagellates Through Tertiary Endosymbiosis
A single origin of the peridinin- and fucoxanthin- containing plastids in dinoflagellates through tertiary endosymbiosis Hwan Su Yoon, Jeremiah D. Hackett, and Debashish Bhattacharya† Department of Biological Sciences and Center for Comparative Genomics, University of Iowa, Iowa City, IA 85542-1324 Edited by Hewson Swift, University of Chicago, Chicago, IL, and approved June 26, 2002 (received for review April 18, 2002) The most widely distributed dinoflagellate plastid contains chlo- (as Gymnodinium breve), Karenia mikimotoi (as Gymnodinium rophyll c2 and peridinin as the major carotenoid. A second plastid mikimotoi), and Karlodinium micrum (as Gymnodinium galathea- type, found in taxa such as Karlodinium micrum and Karenia spp., num) (12) is surrounded by three membranes and contains ͞ ؉ ϩ Ј contains chlorophylls c1 c2 and 19 -hexanoyloxy-fucoxanthin chlorophylls c1 c2 and 19 -hexanoyloxy-fucoxanthin and or .(and͞or 19-butanoyloxy-fucoxanthin but lacks peridinin. Because 19Ј-butanoyloxy-fucoxanthin, but lacks peridinin (6, 13, 14 ؉ the presence of chlorophylls c1 c2 and fucoxanthin is typical of These taxa are believed to be monophyletic, and their plastid is haptophyte algae, the second plastid type is believed to have believed to have originated from a haptophyte alga through a originated from a haptophyte tertiary endosymbiosis in an ances- tertiary endosymbiosis in their common ancestor (15). Hapto- tral peridinin-containing dinoflagellate. This hypothesis has, how- phyte algae are primarily unicellular marine taxa that have ever, never been thoroughly tested in plastid trees that contain external body scales composed of calcium carbonate known as genes from both peridinin- and fucoxanthin-containing dinoflagel- coccoliths, two anterior flagella, and plastids surrounded by four lates. -
Biochemical Characterization and Essentiality of Plasmodium
bioRxiv preprint doi: https://doi.org/10.1101/158956; this version posted July 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Biochemical characterization and essentiality of Plasmodium fumarate hydratase Vijay Jayaraman 1, Arpitha Suryavanshi 1, Pavithra Kalale1, Jyothirmayi Kunala1,2, Hemalatha Balaram 1# 1 Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka, 560064, INDIA. Tel: 91-80-22082812 Fax:91-80-22082766 2 Current affiliation: Molecular characterization/Analytical group, Biocon Research Ltd.-SEZ unit, Biocon Park, Bommasandra-Jigani link road, Bangalore, 560099, INDIA. #E-mail: [email protected] SUMMARY Plasmodium falciparum (Pf), the causative agent of malaria has an iron-sulfur cluster-containing class I fumarate hydratase (FH) that catalyzes the interconversion of fumarate to malate, a well-known reaction in the tricarboxylic acid cycle. In humans, the same reaction is catalyzed by class II FH that has no sequence or structural homology with the class I enzyme. Fumarate, generated in large quantities in the parasite as a byproduct of AMP synthesis is converted to malate by the action of FH, and subsequently used in the generation of the key metabolites oxaloacetate, aspartate and pyruvate. Here we report on the kinetic characterization of purified recombinant PfFH, functional complementation of fh deficiency in Escherichia. coli and mitochondrial localization in the parasite. The substrate analog, mercaptosuccinic acid was found to be a potent inhibitor of PfFH with a Ki value in the nanomolar range.