Mini Review: Genome Mining Approaches for the Identification of Secondary Metabolite Biosynthetic Gene Clusters in Streptomyces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biosynthetic Origin of Anthracimycin: a Tricyclic Macrolide from Streptomyces Sp
The Journal of Antibiotics (2016) 69, 403–405 & 2016 Japan Antibiotics Research Association All rights reserved 0021-8820/16 www.nature.com/ja NOTE Biosynthetic origin of anthracimycin: a tricyclic macrolide from Streptomyces sp. Enjuro Harunari1, Hisayuki Komaki2 and Yasuhiro Igarashi1 The Journal of Antibiotics (2016) 69, 403–405; doi:10.1038/ja.2015.118; published online 2 December 2015 Anthracimycin (1) is a decalin-fused tricyclic macrolide isolated from signals arising from the 13C–13C coupling were clearly observed for all terrestrial and marine Streptomyces species (Figure 1).1–3 1 shows the carbons except for three methyl groups (C-23, C-24 and C-25) strong activity against Gram-stain-positive bacteria including Bacillus and C-11 and C-12 (Supplementary Figure S1). The outer split peaks anthracis and methicillin-resistant Staphylococcus aureus (MRSA).3,4 were invisible owing to the roof effect7 caused by the close chemical The most intriguing feature of this molecule is its enantiomerism to shifts between C-11 and C-12 (Δ 0.11 p.p.m.) although these carbons chlorotonil A (2), a secondary metabolite of a myxobacterium are likely derived from a single acetate unit. In the 2D-INADEQUATE 5 1 Sorangium cellulosum (Figure 1). Except for a methyl substitution at spectrum measured with a parameter set optimized for JCC 45 Hz, 13 C-8 in 2, the absolute configurations of the remaining chiral centers at cross peaks derived from the intact C2 acetate units were observed C-2, C-6, C-7, C-12, C-15 and C-16 are opposite between 1 and 2 for C-1/C-2, C-3/C-4, C-5/C-6, C-7/C-8, C-9/C-10, C-13/C-14, C-15/ although the dichrorination at C-4 in 2 is an additional difference C-16, C-17/C-18, C-19/C-20 and C-21/C-22 (Table 1, Supplementary between these compounds. -
Towards the Total Synthesis of Anthracimycin
Towards the Total Synthesis of Anthracimycin Giacomo Lodovici Doctor of Philosophy University of York Chemistry January 2019 1. Abstract In 2013 W. Fenical et al. reported the isolation of a natural product from a marine microorganism of streptomyces species, which possessed significant activity against Gram-positive pathogens Bacillus anthracis, methicillin-resistant and vancomycin resistant Staphylococcus aureus (MRSA).15 The compound responsible for the antibiotic activity was found to be the 14-membered macrolide named anthracimycin. The research detailed in this thesis describes the efforts towards the total synthesis of this natural product and specifically the formation of the core of anthracimycin in 12-steps. Direct palladium catalysed oxidation formed the enone used as a dienophile in a stereo- and regio-selective Diels‒Alder/epimerisation sequence, which afforded the trans-decalin. A facial and stereoselective Hosomi‒Sakurai 1,4-addition reaction, followed by a selective borylation/dihydroxylation sequence on the exocyclic alkene, allowed the formation of the core of anthracimycin (Scheme 1). Scheme 1. The formation of the decalin core of anthracimcyin. 1 2. Contents 1. Abstract ............................................................................................................................................... 1 2. Contents .............................................................................................................................................. 2 3. List of Figures ..................................................................................................................................... -
Safety, Tolerability and Pharmacokinetics of Intravaginal Pentamycin
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by edoc Pharmacology Chemotherapy 2010;56:190–196 Received: March 20, 2009 DOI: 10.1159/000316329 Accepted after revision: January 12, 2010 Published online: June 10, 2010 Safety, Tolerability and Pharmacokinetics of Intravaginal Pentamycin a a c b B. Frey Tirri J. Bitzer B. Geudelin J. Drewe a b Departments of Obstetrics and Gynecology, and Clinical Pharmacology, University Hospital Basel, and c Mediante GmbH, Basel , Switzerland Key Words cin does not cause adverse reactions compared with vehicle -Antimicrobial agents ؒ Pentamycin ؒ Pharmacokinetics ؒ and is not absorbed through the intact or the inflamed va Polyene antifungal antibiotic ؒ Vaginal infections gina. Copyright © 2010 S. Karger AG, Basel Abstract Background/Aims: Intravaginal pentamycin is a polyene Introduction macrolide with a broad spectrum of antimicrobial activity and is effective in various forms of infectious vaginitis. We The most common vaginal disorders include vaginal evaluated the safety, tolerability and pharmacokinetics of candidiasis, vaginal trichomoniasis and bacterial vagino- escalating doses of this product. Methods: Nineteen healthy sis [1–5] . Forms of infectious vaginitis sustained by mixed volunteers were randomized to receive double blind one of micro-organisms are also observed frequently [6] . Vagi- five doses of intravaginal pentamycin (3, 10, 30, 60 or 100 mg) nal infections can be successfully treated by using one or or the corresponding dose of pentamycin vehicle daily for more pathogen-specific antimicrobials [1, 3, 7–9] , but, be- 6 days. Patients with symptomatic vaginitis received a single fore vaginitis is treated, the cause must be ascertained by dose of 60 (n = 6) or 100 mg (n = 6) of intravaginal penta- using appropriate laboratory tests [1, 2, 6, 7, 10] . -
United States Patent 19 [11] 3,957,754 Aszalos Et Al
United States Patent 19 [11] 3,957,754 ASzalos et al. (45) May 18, 1976 54 COMPLEXES OF ANTIFUNGAL POLYENE 3,777,018 12/1973 Gordon et al................ 260/210 AB ANTIBOTCS FOREIGN PATENTS OR APPLICATIONS (75) Inventors: Adorjan Aszalos, Princeton; John Vandeputte, Milltown, both of N.J. 795,482 5/1958 United Kingdom.......... 260/210 AB (73) Assignee: E. R. Squibb & Sons, Inc., OTHER PUBLICATIONS Princeton, N.J. 22 Filed: Jan. 13, 1975 Mazor et al. “Chem. Abst." Vol. 57, 1962, p. 956g. 21 Appl. No.: 540,750 Primary Examiner-Johnnie R. Brown Related U.S. Application Data Attorney, Agent, or Firm-Lawrence S. Levinson; 62 Division of Ser. No. 100,492, Dec. 21, 1970, Pat. No. Merle J. Smith; Stephen B. Davis 3,879,374. 52 U.S. Cl........................... 260/210 AB; 424/180; 57) ABSTRACT 424/181 51 int. Cl'.......................................... C07H 15/20 Disclosed herein are complexes of polyene antibiotics 58 Field of Search.............. 260/210 AB; 424/117, which are soluble in alcohol or in water and alcohol. 424/119 These complexes are prepared in alcoholic solutions and have been found to be useful as antifungal agents 56) References Cited which can be orally administered. UNITED STATES PATENTS 6 Claims, No Drawings 2,865,807 12, 1958 Dutcher et al............... 260/20 AB 3,957,754 2 Alcohols that can be utilized to carry out the reaction COMPLEXES OF ANTIFUNGAL POLYENE are the lower alkyl alcohols of from 1 to 6 carbons such ANTBIOTICS as methanol, ethanol, isopropanol, isobutanol, butanol, This is a division of Ser. -
The Antimicrobial Potential of Streptomyces from Insect Microbiomes
ARTICLE https://doi.org/10.1038/s41467-019-08438-0 OPEN The antimicrobial potential of Streptomyces from insect microbiomes Marc G. Chevrette 1,2, Caitlin M. Carlson2, Humberto E. Ortega3, Chris Thomas4, Gene E. Ananiev5, Kenneth J. Barns4, Adam J. Book2, Julian Cagnazzo2, Camila Carlos2, Will Flanigan2, Kirk J. Grubbs2, Heidi A. Horn2, F. Michael Hoffmann5, Jonathan L. Klassen6, Jennifer J. Knack 7, Gina R. Lewin8, Bradon R. McDonald 2, Laura Muller2, Weilan G.P. Melo 3, Adrián A. Pinto-Tomás9, Amber Schmitz2, Evelyn Wendt-Pienkowski2, Scott Wildman4, Miao Zhao10, Fan Zhang4, Tim S. Bugni4, David R. Andes10, Monica T. Pupo 3 & Cameron R. Currie2 1234567890():,; Antimicrobial resistance is a global health crisis and few novel antimicrobials have been discovered in recent decades. Natural products, particularly from Streptomyces, are the source of most antimicrobials, yet discovery campaigns focusing on Streptomyces from the soil largely rediscover known compounds. Investigation of understudied and symbiotic sources has seen some success, yet no studies have systematically explored microbiomes for anti- microbials. Here we assess the distinct evolutionary lineages of Streptomyces from insect microbiomes as a source of new antimicrobials through large-scale isolations, bioactivity assays, genomics, metabolomics, and in vivo infection models. Insect-associated Streptomyces inhibit antimicrobial-resistant pathogens more than soil Streptomyces. Genomics and meta- bolomics reveal their diverse biosynthetic capabilities. Further, we describe cyphomycin, a new molecule active against multidrug resistant fungal pathogens. The evolutionary trajectories of Streptomyces from the insect microbiome influence their biosynthetic potential and ability to inhibit resistant pathogens, supporting the promise of this source in augmenting future antimicrobial discovery. -
Anthracimycin B, a Potent Antibiotic Against Gram-Positive Bacteria Isolated from Cultures of the Deep-Sea Actinomycete Streptomyces Cyaneofuscatus M-169
marine drugs Article Anthracimycin B, a Potent Antibiotic against Gram-Positive Bacteria Isolated from Cultures of the Deep-Sea Actinomycete Streptomyces cyaneofuscatus M-169 Víctor Rodríguez 1 , Jesús Martín 1, Aida Sarmiento-Vizcaíno 2, Mercedes de la Cruz 1 , Luis A. García 3 , Gloria Blanco 2,* and Fernando Reyes 1,* 1 Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, Parque Tecnológico de Ciencias de la Salud, E-18016 Granada, Spain; [email protected] (V.R.); [email protected] (J.M.); [email protected] (M.d.l.C.) 2 Departamento de Biología Funcional, Área de Microbiología, and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain; [email protected] 3 Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Área de Ingeniería Química, Universidad de Oviedo, 33006 Oviedo, Spain; [email protected] * Correspondence: [email protected] (G.B.); [email protected] (F.R.); Tel.: +34-985-103-205 (G.B.); +34-958-993-965 (F.R.) Received: 8 October 2018; Accepted: 24 October 2018; Published: 25 October 2018 Abstract: The potent antimicrobial extract of a culture of the marine derived actinomycete Streptomyces cyaneofuscatus M-169 was fractionated by reversed phase flash chromatography and preparative HPLC to yield the new Gram-positive antibiotic, anthracimycin B (1), together with its congener, anthracimycin (2). The structure of the new compound was established by analysis of its ESI-TOF MS and 1D and 2D NMR spectra, and comparison with data published for anthracimycin and anthracimycin BII-2619 (3). -
Alphabetical Listing of ATC Drugs & Codes
Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04 -
© 2015 Ryan Ellis Cobb
© 2015 Ryan Ellis Cobb NATURAL PRODUCT DISCOVERY AND ENGINEERING AT THE PROTEIN, PATHWAY, AND GENOME SCALES BY RYAN ELLIS COBB DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2015 Urbana, Illinois Doctoral Committee: Professor Huimin Zhao, Chair Professor William W. Metcalf Professor Satish K. Nair Professor Christopher V. Rao Abstract For centuries, mankind has turned to natural sources for cures, remedies, and ways to improve its quality of life. It was not until the discovery of the antibiotic penicillin in 1928, however, that natural products – small molecule secondary metabolites produced by a variety of organisms for a variety of purposes – were truly appreciated as the source of these beneficial properties. In the ensuing decades, research in the field of natural products boomed, and a number of discoveries were made that revolutionized global health. In the 1970s and 1980s, however, these discoveries started to become fewer and farther between, prompting pharmaceutical companies to turn away from natural products research in favor of synthetic chemistry approaches to drug discovery. Nevertheless, despite diminishing returns from traditional natural product discovery methods, modern genomics has in fact revealed that vast numbers of natural product gene clusters exist across all domains of life, far in excess of the number of known natural products and far surpassing any previous predictions. Thus, natural product discovery efforts to date have only scratched the surface of Nature’s true capabilities. In this work, we sought to leverage modern techniques for natural product discovery at the protein, pathway, and genome scales to tap into this biosynthetic potential. -
Oxiconazole Nitrate (BANM, USAN, Rinnm) Tral.: Kenacomb; Otocomb Otic; Austria: Mycostatin V; Mycostatin- Fungichromin; Lagosin; Pentamicina
544 Antifungals Port.: Mycostatin; S.Afr.: Candacide; Canstat; Mycostatin; Nystacid; Singa- Preparations Profile pore: Mycostatin†; Spain: Mycostatin; Swed.: Mycostatin; Switz.: Mycos- Parconazole is an antifungal that has been used as the hydrochlo- tatine; Thai.: Lystin†; Mycostatin; Turk.: Fungostatin; Mikostatin; UAE: Proprietary Preparations (details are given in Part 3) ride in the treatment of gastrointestinal candidiasis in veterinary Mikostat; UK: Nystamont†; Nystan; USA: Mycostatin; Nilstat; Nystop; Pedi- Dri; Venez.: Micostatin; Nistafesa†; Romalina†. Austria: Afongan; Fr.: Fongamil; Fongarex; Gr.: Fongamil; Hung.: Mikogal; medicine. Mex.: Afongan; Port.: Afongan†; Fongamil; Rus.: Mikogal (Микогал). Multi-ingredient: Arg.: Bacticort Complex; Bexon; Biotaer Gamma†; Bi- otaer Nebulizable; Dermadex NN; Farm-X Duo; Fasigyn Nistatina; Flagys- tatin; Kenacomb; Linfol; Min O; Naxo TV; Neocolpoben†; Nistinol; O-Biol; Pentamycin O-Biol P; Pelvicillin NF; Polygynax; Terra-Cortril Nistatina†; Tratomax; Aus- Oxiconazole Nitrate (BANM, USAN, rINNM) tral.: Kenacomb; Otocomb Otic; Austria: Mycostatin V; Mycostatin- Fungichromin; Lagosin; Pentamicina. Zinkoxid; Topsym polyvalent; Belg.: Eoline†; Mycolog; Polygynax†; Braz.: Nitrato de oxiconazol; Oxiconazole, Nitrate d’; Oxiconazoli Ni- Benzevit; Bio-Vagin; Colpagex N; Colpatrin; Colpist; Colpistar; Colpistatin; Пентамицин tras; Ro-13-8996; Ro-13-8996/001; Ro-13-8996/000 (oxicona- Colpolase; Dermodex; Dermokin; Donnagel; Flagyl Nistatina; Fungimax; Gi- C35H58O12 = 670.8. nec†; Ginestatin; Gynax-N; Londerm-N; Minegyl C/Nistatina†; Mud; Nax- zole); SGD-301-76; ST-813. 2′,4′-Dichloro-2-imidazol-1-ylace- CAS — 6834-98-6. ogin Composto; Neolon-D; Nistazol†; Omcilon A M; Onciplus; Oxyderme; tophenone (Z)-O-(2,4-dichlorobenzyl)oxime mononitrate. Poliginax; Tricolpex; Tricomax; Trivagel N; Vagi Biotic; Vagimax; Vagitrin-N; ATC — G01AA11. Canad.: Flagystatin; Kenacomb†; ratio-Triacomb; Triacomb†; Viaderm-KC; Оксиконазола Нитрат ATC Vet — QG01AA11. -
Nosocomial Infections: Pathogenicity, Resistance and Novel Antimicrobials
Innov Biosyst Bioeng, 2021, vol. 5, no. 2, 73–84 doi: 10.20535/ibb.2021.5.2.228970 Review UDC 606:615:616.9 NOSOCOMIAL INFECTIONS: PATHOGENICITY, RESISTANCE AND NOVEL ANTIMICROBIALS L. Wu1,2, Z.С. Wu1, T.S. Todosiichuk2, O.M. Korneva2 1Hainan Medical University, Haikou, China 2Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine *Corresponding author: [email protected] Received 30 March 2021; Accepted 20 April 2021 Background. The fight against the spread of infectious diseases creates the problem of resistance to pathogens and the most resistant of them – the propagators of nosocomial infections – are formed in hospitals because of a number of reasons. The solution of the problem lies in different areas, but the search of new effective means for the treatment of such diseases remains relevant right today. The shortest way to do this is to find the "pain points" of the pathogens themselves, i.e. the factors of their pathogenicity and resistance to which the action of novel antiseptics should be directed. Objective. We aimed to analyse and evaluate the main factors of pathogenicity and resistance of pathogens of nosocomial infections to determine modern approaches to the development of novel antimicrobials. Methods. Search and systematization of new scientific data and results concerning pathogenic factors of microbial pathogens that can be used as targets for the action of drugs. Results. Over the last 10–20 years, due to the development of new research methods in biology, it has become possible to clarify the features and additional conditions for the detection of pathogenic factors of nosocomial infections. -
Diccionario Del Sistema De Clasificación Anatómica, Terapéutica, Química - ATC CATALOGO SECTORIAL DE PRODUCTOS FARMACEUTICOS
DIRECCION GENERAL DE MEDICAMENTOS, INSUMOS Y DROGAS - DIGEMID EQUIPO DE ASESORIA - AREA DE CATALOGACION Diccionario del Sistema de Clasificación Anatómica, Terapéutica, Química - ATC CATALOGO SECTORIAL DE PRODUCTOS FARMACEUTICOS CODIGO DESCRIPCION ATC EN CASTELLANO DESCRIPCION ATC EN INGLES FUENTE A TRACTO ALIMENTARIO Y METABOLISMO ALIMENTARY TRACT AND METABOLISM ATC OMS A01 PREPARADOS ESTOMATOLÓGICOS STOMATOLOGICAL PREPARATIONS ATC OMS A01A PREPARADOS ESTOMATOLÓGICOS STOMATOLOGICAL PREPARATIONS ATC OMS A01AA Agentes para la profilaxis de las caries Caries prophylactic agents ATC OMS A01AA01 Fluoruro de sodio Sodium fluoride ATC OMS A01AA02 Monofluorfosfato de sodio Sodium monofluorophosphate ATC OMS A01AA03 Olaflur Olaflur ATC OMS A01AA04 Fluoruro de estaño Stannous fluoride ATC OMS A01AA30 Combinaciones Combinations ATC OMS A01AA51 Fluoruro de sodio, combinaciones Sodium fluoride, combinations ATC OMS A01AB Antiinfecciosos y antisépticos para el tratamiento oral local Antiinfectives and antiseptics for local oral treatment ATC OMS A01AB02 Peróxido de hidrógeno Hydrogen peroxide ATC OMS A01AB03 Clorhexidina Chlorhexidine ATC OMS A01AB04 Amfotericina B Amphotericin B ATC OMS A01AB05 Polinoxilina Polynoxylin ATC OMS A01AB06 Domifeno Domiphen ATC OMS A01AB07 Oxiquinolina Oxyquinoline ATC OMS A01AB08 Neomicina Neomycin ATC OMS A01AB09 Miconazol Miconazole ATC OMS A01AB10 Natamicina Natamycin ATC OMS A01AB11 Varios Various ATC OMS A01AB12 Hexetidina Hexetidine ATC OMS A01AB13 Tetraciclina Tetracycline ATC OMS A01AB14 Cloruro de benzoxonio -
Supplementary Figures and Tables
Supplementary Material Title: Isolation and Identification of an Anthracimycin Analogue from Nocardiopsis kunsanensis, a Halophile from a Saltern, by Genomic Mining Strategy Authors: Fernanda L. Sirota1,#,*, Falicia Goh1,#, Kia-Ngee Low1,#, Lay-Kien Yang1, Sharon C. Crasta1, Birgit Eisenhaber1, Frank Eisenhaber1,2, Yoganathan Kanagasundaram1,*, Siew Bee Ng1,* Table S1 Suppl. Table S1 - List of top organisms with the highest number of domain hits no. domain hits Organisms psi-blast blast Streptomyces sp. CNH365 41 41 Streptomyces sp. NRRL F-5065 41 41 Streptomyces sp. T676 41 41 Streptomyces sp. TP-A0875 41 41 Nocardiopsis kunsanensis 41 40 Sorangium cellulosum 40 39 Bacillus amyloliquefaciens 39 36 Bacillus subtilis 39 36 Streptococcus pneumoniae 39 33 Table S2 Suppl. Table 2 – Blast 2 sequences results with E-value 0.0 for all of them accession no. (length) query subject query cover identity Streptomyces sp. T676 N. kunsanensis atcC1 CTQ34880 (1108) WP_017577639# (1084) 98% 60% atcD2 CTQ34881 (6561) WP_017577638* (6332) 99% 50% atcE3 CTQ34882 (4468) WP_017577637* (4336) 99% 54% atcF4 CTQ34883 (3869) WP_020480252* (3763) 99% 55% 1 atcC; trans-AT; acylhydrolase, acyltransferase (malonyl-CoA), FMN-dependent enoylreductase 2 atcD; polyketide synthase, modules 1-4 3 atcE; polyketide synthase, modules 5-7 4 atcF; polyketide synthase, modules 8-10 # [acyl-carrier-protein] S-malonyltransferase * hypothetical protein Figure S1 Structure elucidation of (a) anthracimycin (1) in N. kunsanensis, (b-c) anthracimycin standard in Streptomyces sp. T676 and (d) their comparison with anthracimycin BII- 2619. 1 (a) H NMR spectrum of anthracimycin (1) from N. kunsanensis in CDCl3 at 400 MHz. 1 (b) H NMR spectrum of anthracimycin standard from Streptomyces sp.