Thesis Reference

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Reference Thesis Dynamics and combinatorics of 2 and 3 dimensional triangulations YOUNAN, Maher Afif Abstract We study in detail two aspects of 2 and 3 dimensional triangulations of the sphere. In the "Dynamics" part, we construct two models in statistical mechanics, on the set of all triangulations of $S^2$ and $S^3$ respectively, and we show that these models behave as glasses, in the sense that these models show a tremendous slowing down of their dynamics once we lower the temperature. We call such models "topological glasses". In the "combinatorics" part, we study the question of counting the number of triangulations of the 3d sphere $S^3$. This is an old and difficult question and even though we do not solve it, we make some very interesting contributions and we find results we strongly believe are a good step towards finding a solution. Reference YOUNAN, Maher Afif. Dynamics and combinatorics of 2 and 3 dimensional triangulations. Thèse de doctorat : Univ. Genève, 2014, no. Sc. 4738 URN : urn:nbn:ch:unige-432696 DOI : 10.13097/archive-ouverte/unige:43269 Available at: http://archive-ouverte.unige.ch/unige:43269 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Section de Physique Professeur Jean-Pierre ECKMANN Département de Physique théorique Professeur Peter WITTWER Dynamics And Combinatorics Of 2 and 3 Dimensional Triangulations THÈSE présentée à la Faculté des sciences de l’Université de Genève pour obtenir le grade de Docteur ès sciences, mention physique par Maher YOUNAN de Maghdouché (Liban) Thèse No 4738 GENÈVE Atelier d’impression de l’Université de Genève 2014 Remerciements Ces cinq dernières années de ma vie ont été très enrichissantes, et m’ont permis de grandir en tant que scientifique mais aussi en tant qu’être humain. Je tiens donc, avant tout autre propos, à consacrer ce chapitre à toutes celles et tous ceux qui m’ont aidé et accompagné durant ce parcours. Tout d’abord, un très grand merci au Professeur Jean-Pierre Eckmann, mon directeur de thèse qui a partagé avec moi bien plus que ses connaissances scientifiques. Je n’oublierai pas de sitôt les pauses café où nous parlions de science mais aussi de politique, d’actualité et de religion. Le Professeur Jean-Pierre Eckmann a toujours été disponible, et je le remercie pour sa direction, ses conseils et toute l’aide qu’il m’a apportée le long de ces années. Je tiens à remercier le Professeur Peter Wittwer pour avoir accepté d’être mon codirecteur de thèse ainsi que pour toutes les discussions enrichissantes que nous avons eues et tous les conseils et l’aide qu’il m’a apportés. Je remercie le Professeur Charles Radin de l’Université de Texas, le Professeur Pierre Collet de l’École Polytechnique de Paris et le Professeur Yvan Velenik de l’Université de Genève pour avoir accepté de faire partie de mon jury de thèse et pour avoir partagé avec moi leurs connaissances lors de diverses discussions que nous avons eues durant ces dernières années. Un merci particulier au Professeur Charles-Edouard Pfister de l’École Polytechnique Fédérale de Lausanne. C’est pendant ses cours que j’ai appris à aimer la physique mathéma- tique. Ce travail n’aurait pas vu le jour sans le soutien financier du Fonds National Suisse de la Recherche Scientifique (FNS) et du Conseil Européen de la Recherche (ERC). Sur un plan plus personnel, je tiens à remercier le Département de Physique Théorique de l’Université de Genève, et en particulier les secrétaires Francine Gennai-Nicole et Cécile Jaggi-Chevalley, ainsi que l’ingénieur informatique Andreas Malaspinas. Je souhaite remercier mes collègues et amis Cyrille Zbinden, Christoph Boeckle, Julien Guillod, Noé Cuneo, Andrea Agazzi et Jimmy Dubuisson pour toutes les discussions et les petites anecdotes qu’on a eues. C’est en grande partie grâce à eux que mon expérience à Genève fut aussi riche. Je remercie toute ma famille qui m’a toujours soutenu, ma mère Lina, mon père Afif, ma sœur Nathalie et mon frère Nader. Mes pensées vont aussi à tous mes amis. Je tiens à citer Anca Stérie, Marine Vidaud, Ludovic Pirl et la famille Kambly. Sans leur soutien, mes études n’auraient probablement pas été aussi fructueuses. Finalement, je tiens à remercier toutes les personnes qui liront ce document. i ii Résumé Cette thèse traite des triangulations topologiques, i.e., des décompositions en simplexes des sphères S 2 et S 3 de dimension 2 et 3. En particulier, nous nous intéressons à deux aspects de ces triangulations: leur nombre, qui est le sujet du deuxième et troisième chapitre, ainsi que la dynamique de verre qu’on peut avoir sur ces triangulations, traitée dans le premier et le dernier chapitre. En mécanique statistique hors équilibre, un verre est défini comme étant un solide amor- phe qui ne possède pas la périodicité des cristaux. Certains verres ont même une structure similaire à celle des liquides telle qu’on peut leur associer un coefficient de viscosité. Dans cette thèse, nous nous intéressons à un type de modèles de verre très particulier que nous appellons les verres topologiques. Ils sont définis de la façon suivante: L’espace de phase est l’ensemble de toutes les triangulations de la sphère S d de dimension d = 2, 3. Le cas d = 2 est résolu dans le premier chapitre tandis que le cas d = 3 est le sujet du dernier chapitre. Les mouvements élémentaires de la dynamique sont donnés par les mouvements de Pachner qui conservent le nombre de noeuds, à savoir le mouvement T1 en 2 dimensions et les mouvement 2-3 et 3-2 en 3 dimensions. Etant donné une triangulation A, son énergie est locale, donc une somme des contributions de chaque noeud v: E = f (I(v)) , v∈VX(A) où v ∈ V(A) est un noeud de A, I(v) est le voisinage de v, i.e., la sous-triangulation de A contenant uniquement les voisins de v et f (·) est une fonction positive qui donne la contribution en énergie de v. Finalement, la dynamique est donnée par un algorithme de Metropolis dont le seul paramètre libre est la tempérture T. Ces systèmes se comportent comme des verres; en particulier, leur dynamique ralentit énormément quand la tempérture T s’approche de zéro. Par exemple, nous observons que l’énergie s’approche de sa valeur stationnaire à T ≪ 1 de façon polynomiale et non pas expo- nentielle. De plus, la fonction de corrélation du temps décroît avec un temps de relaxation τr, qu’on peut interpréter comme un coefficient de viscosité, qui croît exponentiellement en fonction de l’inverse de la température. Dans le deuxième et troisième chapitre, nous étudions en détail une propriété de l’espace de phase 3d, à savoir sa taille: quelle est le nombre de triangulations de S 3 avec t tétrahèdres? La question équivalente en 2d a été résolue par W. Tutte en 1962; sa téchnique est basée sur une variation de la méthode permettant de compter les arbres binaires. Une généralisation simple de cette méthode au cas 3d n’aboutit pas, à cause de la richesse de la topology de S 3. En particulier, il est possible de trianguler la sphère S 3 de telle façon à ce qu’elle contienne une arête nouée. iii iv Etant donné une triangulation arbitraire A de S 3, notre méthode consiste à la décomposer en un arbre de triangulations élémentaires que nous appelons noyaux. Un noyau est une triangulation 3d d’un polytope (donc avec bord), sans noeud interne, tel que chaque face interne possède au plus une arête externe (sur le bord). Un tétrahèdre (le simplexe 3d) est un noyau, mais contrairement au cas 2d, il existe des noyaux plus complexes. Nous montrons que si le nombre de noyaux avec t tétrahèdres admet une borne exponentielle en t, alors le nombre de triangulations de S 3 admet une borne exponentielle similaire. Dans le troisième chapitre, nous réduisons ces noyaux à des triangulations encore plus petites, en identifiant certains noeuds adjacents sur le bord. Nous obtenons ce que nous appelons des atomes. Nous montrons que si leur nombre admet une borne exponentielle, alors le nombre de noyaux et par suite, celui de toutes les triangulations de S 3 admet une borne similaire. L’intérêt de cette décomposition en atomes est le suivant: le nombre de triangulations contenenant une arête nouée d’une façon particulière, comme par exemple en un noeud de trèfle, est très grand. Par contre, un atome contient l’essentiel de l’information topologique. Nous postulons que le nombre d’atomes contenant une arête avec un noeud particulier est très petit, peut-être même égal à un. Démontrer un tel résultat permtettra de résoudre le problème consistant à compter les triangulations de S 3. Contents Remerciements i Résumé iii 1 Introduction 1 2 2D Topological Glass 11 2.1 Introduction,themodel. ...... 11 2.2 Equilibrium and the approximation of the dynamics . ........... 12 2.3 Descriptionofthestationarystate . ......... 12 2.3.1 Energyofthestationarystate . ..... 13 2.3.2 Distributionofthecolors . .... 13 2.3.3 Energycostofflips .............................. 14 2.3.4 The number of local defect configurations . ....... 15 2.4 Dynamics of the system (at equilibrium) . ......... 17 2.4.1 Themostprobableflips. .. 18 2.4.2 Lifetimeofpairs............................... .. 21 2.5 The Geometry of pair-defect collisions . .......... 21 2.5.1 Definition..................................... 22 2.5.2 Collisiontypes................................ .. 22 2.6 Relevantandirrelevantpairs . ....... 26 2.7 Timecorrelationsatequilibrium . ........ 27 2.8 Theagingprocess ................................. ... 29 2.8.1 Threetimescales............................... .. 30 2.8.2 The quasistationarity assumption and the density of pairs ........ 30 2.8.3 The diffusion constant of single defects .
Recommended publications
  • A General Geometric Construction of Coordinates in a Convex Simplicial Polytope
    A general geometric construction of coordinates in a convex simplicial polytope ∗ Tao Ju a, Peter Liepa b Joe Warren c aWashington University, St. Louis, USA bAutodesk, Toronto, Canada cRice University, Houston, USA Abstract Barycentric coordinates are a fundamental concept in computer graphics and ge- ometric modeling. We extend the geometric construction of Floater’s mean value coordinates [8,11] to a general form that is capable of constructing a family of coor- dinates in a convex 2D polygon, 3D triangular polyhedron, or a higher-dimensional simplicial polytope. This family unifies previously known coordinates, including Wachspress coordinates, mean value coordinates and discrete harmonic coordinates, in a simple geometric framework. Using the construction, we are able to create a new set of coordinates in 3D and higher dimensions and study its relation with known coordinates. We show that our general construction is complete, that is, the resulting family includes all possible coordinates in any convex simplicial polytope. Key words: Barycentric coordinates, convex simplicial polytopes 1 Introduction In computer graphics and geometric modelling, we often wish to express a point x as an affine combination of a given point set vΣ = {v1,...,vi,...}, x = bivi, where bi =1. (1) i∈Σ i∈Σ Here bΣ = {b1,...,bi,...} are called the coordinates of x with respect to vΣ (we shall use subscript Σ hereafter to denote a set). In particular, bΣ are called barycentric coordinates if they are non-negative. ∗ [email protected] Preprint submitted to Elsevier Science 3 December 2006 v1 v1 x x v4 v2 v2 v3 v3 (a) (b) Fig.
    [Show full text]
  • Fitting Tractable Convex Sets to Support Function Evaluations
    Fitting Tractable Convex Sets to Support Function Evaluations Yong Sheng Sohy and Venkat Chandrasekaranz ∗ y Institute of High Performance Computing 1 Fusionopolis Way #16-16 Connexis Singapore 138632 z Department of Computing and Mathematical Sciences Department of Electrical Engineering California Institute of Technology Pasadena, CA 91125, USA March 11, 2019 Abstract The geometric problem of estimating an unknown compact convex set from evaluations of its support function arises in a range of scientific and engineering applications. Traditional ap- proaches typically rely on estimators that minimize the error over all possible compact convex sets; in particular, these methods do not allow for the incorporation of prior structural informa- tion about the underlying set and the resulting estimates become increasingly more complicated to describe as the number of measurements available grows. We address both of these short- comings by describing a framework for estimating tractably specified convex sets from support function evaluations. Building on the literature in convex optimization, our approach is based on estimators that minimize the error over structured families of convex sets that are specified as linear images of concisely described sets { such as the simplex or the free spectrahedron { in a higher-dimensional space that is not much larger than the ambient space. Convex sets parametrized in this manner are significant from a computational perspective as one can opti- mize linear functionals over such sets efficiently; they serve a different purpose in the inferential context of the present paper, namely, that of incorporating regularization in the reconstruction while still offering considerable expressive power. We provide a geometric characterization of the asymptotic behavior of our estimators, and our analysis relies on the property that certain sets which admit semialgebraic descriptions are Vapnik-Chervonenkis (VC) classes.
    [Show full text]
  • Polytopes with Special Simplices 3
    POLYTOPES WITH SPECIAL SIMPLICES TIMO DE WOLFF Abstract. For a polytope P a simplex Σ with vertex set V(Σ) is called a special simplex if every facet of P contains all but exactly one vertex of Σ. For such polytopes P with face complex F(P ) containing a special simplex the sub- complex F(P )\V(Σ) of all faces not containing vertices of Σ is the boundary of a polytope Q — the basis polytope of P . If additionally the dimension of the affine basis space of F(P )\V(Σ) equals dim(Q), we call P meek; otherwise we call P wild. We give a full combinatorial classification and techniques for geometric construction of the class of meek polytopes with special simplices. We show that every wild polytope P ′ with special simplex can be constructed out of a particular meek one P by intersecting P with particular hyperplanes. It is non–trivial to find all these hyperplanes for an arbitrary basis polytope; we give an exact description for 2–basis polytopes. Furthermore we show that the f–vector of each wild polytope with special simplex is componentwise bounded above by the f–vector of a particular meek one which can be computed explicitly. Finally, we discuss the n–cube as a non–trivial example of a wild polytope with special simplex and prove that its basis polytope is the zonotope given by the Minkowski sum of the (n − 1)–cube and vector (1,..., 1). Polytopes with special simplex have applications on Ehrhart theory, toric rings and were just used by Francisco Santos to construct a counter–example disproving the Hirsch conjecture.
    [Show full text]
  • 15 BASIC PROPERTIES of CONVEX POLYTOPES Martin Henk, J¨Urgenrichter-Gebert, and G¨Unterm
    15 BASIC PROPERTIES OF CONVEX POLYTOPES Martin Henk, J¨urgenRichter-Gebert, and G¨unterM. Ziegler INTRODUCTION Convex polytopes are fundamental geometric objects that have been investigated since antiquity. The beauty of their theory is nowadays complemented by their im- portance for many other mathematical subjects, ranging from integration theory, algebraic topology, and algebraic geometry to linear and combinatorial optimiza- tion. In this chapter we try to give a short introduction, provide a sketch of \what polytopes look like" and \how they behave," with many explicit examples, and briefly state some main results (where further details are given in subsequent chap- ters of this Handbook). We concentrate on two main topics: • Combinatorial properties: faces (vertices, edges, . , facets) of polytopes and their relations, with special treatments of the classes of low-dimensional poly- topes and of polytopes \with few vertices;" • Geometric properties: volume and surface area, mixed volumes, and quer- massintegrals, including explicit formulas for the cases of the regular simplices, cubes, and cross-polytopes. We refer to Gr¨unbaum [Gr¨u67]for a comprehensive view of polytope theory, and to Ziegler [Zie95] respectively to Gruber [Gru07] and Schneider [Sch14] for detailed treatments of the combinatorial and of the convex geometric aspects of polytope theory. 15.1 COMBINATORIAL STRUCTURE GLOSSARY d V-polytope: The convex hull of a finite set X = fx1; : : : ; xng of points in R , n n X i X P = conv(X) := λix λ1; : : : ; λn ≥ 0; λi = 1 : i=1 i=1 H-polytope: The solution set of a finite system of linear inequalities, d T P = P (A; b) := x 2 R j ai x ≤ bi for 1 ≤ i ≤ m ; with the extra condition that the set of solutions is bounded, that is, such that m×d there is a constant N such that jjxjj ≤ N holds for all x 2 P .
    [Show full text]
  • ADDENDUM the Following Remarks Were Added in Proof (November 1966). Page 67. an Easy Modification of Exercise 4.8.25 Establishes
    ADDENDUM The following remarks were added in proof (November 1966). Page 67. An easy modification of exercise 4.8.25 establishes the follow­ ing result of Wagner [I]: Every simplicial k-"complex" with at most 2 k ~ vertices has a representation in R + 1 such that all the "simplices" are geometric (rectilinear) simplices. Page 93. J. H. Conway (private communication) has established the validity of the conjecture mentioned in the second footnote. Page 126. For d = 2, the theorem of Derry [2] given in exercise 7.3.4 was found earlier by Bilinski [I]. Page 183. M. A. Perles (private communication) recently obtained an affirmative solution to Klee's problem mentioned at the end of section 10.1. Page 204. Regarding the question whether a(~) = 3 implies b(~) ~ 4, it should be noted that if one starts from a topological cell complex ~ with a(~) = 3 it is possible that ~ is not a complex (in our sense) at all (see exercise 11.1.7). On the other hand, G. Wegner pointed out (in a private communication to the author) that the 2-complex ~ discussed in the proof of theorem 11.1 .7 indeed satisfies b(~) = 4. Page 216. Halin's [1] result (theorem 11.3.3) has recently been genera­ lized by H. A. lung to all complete d-partite graphs. (Halin's result deals with the graph of the d-octahedron, i.e. the d-partite graph in which each class of nodes contains precisely two nodes.) The existence of the numbers n(k) follows from a recent result of Mader [1] ; Mader's result shows that n(k) ~ k.2(~) .
    [Show full text]
  • Math.CO] 14 May 2002 in Npriua,Tecne Ulof Hull Convex Descrip the Simple Particular, Similarly in No Tion
    Fat 4-polytopes and fatter 3-spheres 1, 2, † 3, ‡ David Eppstein, ∗ Greg Kuperberg, and G¨unter M. Ziegler 1Department of Information and Computer Science, University of California, Irvine, CA 92697 2Department of Mathematics, University of California, Davis, CA 95616 3Institut f¨ur Mathematik, MA 6-2, Technische Universit¨at Berlin, D-10623 Berlin, Germany φ We introduce the fatness parameter of a 4-dimensional polytope P, defined as (P)=( f1 + f2)/( f0 + f3). It arises in an important open problem in 4-dimensional combinatorial geometry: Is the fatness of convex 4- polytopes bounded? We describe and analyze a hyperbolic geometry construction that produces 4-polytopes with fatness φ(P) > 5.048, as well as the first infinite family of 2-simple, 2-simplicial 4-polytopes. Moreover, using a construction via finite covering spaces of surfaces, we show that fatness is not bounded for the more general class of strongly regular CW decompositions of the 3-sphere. 1. INTRODUCTION Only the two extreme cases of simplicial and of simple 4- polytopes (or 3-spheres) are well-understood. Their f -vectors F correspond to faces of the convex hull of F , defined by the The characterization of the set 3 of f -vectors of convex 4 valid inequalities f 2 f and f 2 f , and the g-Theorem, 3-dimensional polytopes (from 1906, due to Steinitz [28]) is 2 ≥ 3 1 ≥ 0 well-known and explicit, with a simple proof: An integer vec- proved for 4-polytopes by Barnette [1] and for 3-spheres by Walkup [34], provides complete characterizations of their f - tor ( f0, f1, f2) is the f -vector of a 3-polytope if and only if it satisfies vectors.
    [Show full text]
  • Stacked 4-Polytopes with Ball Packable Graphs
    STACKED 4-POLYTOPES WITH BALL PACKABLE GRAPHS HAO CHEN Abstract. After investigating the ball-packability of some small graphs, we give a full characterisation, in terms of forbidden induced subgraphs, for the stacked 4-polytopes whose 1-skeletons can be realised by the tangency relations of a ball packing. 1. Introduction A ball packing is a collection of balls with disjoint interiors. A graph is said to be ball packable if it can be realized by the tangency relations of a ball packing. Formal definitions will be given later. The combinatorics of disk packings (2-dimensional ball packings) is well un- derstood thanks to the Koebe{Andreev{Thurston's disk packing theorem, which says that every planar graph is disk packable. However, we know little about the combinatorics of ball packings in higher dimensions. In this paper we study the relation between Apollonian ball packings and stacked polytopes: An Apollonian ball packing is formed by repeatedly filling new balls into holes in a ball packing. A stacked polytope is formed, starting from a simplex, by repeatedly gluing new simplices onto facets. Detailed and formal introductions can be found respectively in Section 2.3 and in Section 2.4. There is a 1-to-1 correspondence between 2-dimensional Apollonian ball packings and 3-dimensional stacked polytopes: a graph can be realised by the tangency relations of an Apollonian disk packing if and only if it is the 1-skeleton of a stacked 3-polytope. As we will see, this relation does not hold in higher dimensions: On one hand, the 1-skeleton of a stacked polytope may not be realizable by the tangency relations of any Apollonian ball packing.
    [Show full text]
  • Chapter 9 Convex Polytopes
    Chapter 9 Convex Polytopes Recall that we have defined a convex polytope to be the convex hull of a finite point set P Rd (Definition 5.7). In this chapter, we take a closer at convex polytopes and ⊂ their structure; in particular, we discuss their connections to Delaunay triangulations and Voronoi diagrams. On the way, we are borrowing a lot of material from Ziegler’s classical book Lectures on Polytopes [3]. In the sequel, we will omit the attribute convex whenever we talk about polytopes. We are already somewhat familiar with polytopes in dimensions d = 2; 3. For d = 2, a polytope is just a convex polygon, see Figure 9.1. q6 q6 q7 q7 q5 q5 q1 q4 q1 q4 q3 q3 q2 q2 (a) Finite point set P R2. (b) conv(P), a convex polygon with vertex set ⊂ Q P ⊂ Figure 9.1: Convex polytopes in R2 are convex polygons. Convex polygons are boring in the sense that they all look the same, combinatorially: the vertex-edge graph of a convex polygon with n vertices is just a simple cycle of length n. Therefore, from a graph-theoretical viewpoint, all convex polygons with n vertices are isomorphic. The situation is more interesting for d = 3 where infinitely many combinatorially different polytopes exist. The most popular examples are the five platonic solids. Two 127 Chapter 9. Convex Polytopes Geometry: C&A 2020 of them are the octahedron 1 and the dodecahedron 2, see Figure 9.2. Figure 9.2: Two 3-dimensional polytopes: The octahedron (left) and the dodecahe- dron (right) Vertex-edges graphs of 3-dimensional polytopes are well-understood, due to the fol- lowing classical result.
    [Show full text]
  • Shelling Polyhedral 3-Balls and 4-Polytopes G¨Unter M. Ziegler
    Shelling Polyhedral 3-Balls and 4-Polytopes Gunter¨ M. Ziegler Dept. Mathematics, MA 6-1 Technische Universit¨at Berlin 10623 Berlin, Germany [email protected] http://www.math.tu-berlin.de/ ziegler Abstract There is a long history of constructions of non-shellable triangulations of -dimensional (topo- logical) balls. This paper gives a survey of these constructions, including Furch’s 1924 construction using knotted curves, which also appears in Bing’s 1962 survey of combinatorial approaches to the Poincar´e conjecture, Newman’s 1926 explicit example, and M. E. Rudin’s 1958 non-shellable tri- angulation of a tetrahedron with only vertices (all on the boundary) and facets. Here an (ex- tremely simple) new example is presented: a non-shellable simplicial -dimensional ball with only vertices and facets. It is further shown that shellings of simplicial -balls and -polytopes can “get stuck”: simpli- cial -polytopes are not in general “extendably shellable.” Our constructions imply that a Delaunay triangulation algorithm of Beichl & Sullivan, which proceeds along a shelling of a Delaunay triangu- lation, can get stuck in the 3D version: for example, this may happen if the shelling follows a knotted curve. 1 Introduction Shellability is a concept that has its roots in the theory of convex polytopes, going back to Schl¨afli’s work [30] written in 1852. The power of shellability became apparent with Bruggesser & Mani’s 1971 proof [14] that all convex polytopes are shellable: this provided a very simple proof for the -dimensional Euler-Poincar´e formula, and it lies at the heart of McMullen’s 1970 proof [26] of the Upper Bound Theorem.
    [Show full text]
  • Incidence Graphs and Unneighborly Polytopes
    Incidence Graphs and Unneighborly Polytopes vorgelegt von Diplom-Mathematiker Ronald Frank Wotzlaw aus G¨ottingen Von der Fakult¨at II – Mathematik und Naturwissenschaften der Technischen Universit¨at Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Fredi Tr¨oltzsch Berichter: Prof. G¨unter M. Ziegler Prof. Gil Kalai Tag der wissenschaftlichen Aussprache: 6. Februar 2009 Berlin 2009 D 83 . for though it cannot hope to be useful or informative on all matters, it does at least make the reassuring claim, that where it is inaccurate it is at least definitively inaccurate. In cases of major discrepancy it’s always reality that’s got it wrong. The Restaurant at the End of the Universe Douglas Adams For Finja and Nora Preface This thesis is about polytopes and “their life in high dimensions.” Nearly all questions considered here are trivial or simple exercises when restricted to dimensions that we can “see.” More often than not, the interesting examples start to appear in dimensions d = 6, 7, 8 or even much higher. Nevertheless, I have tried to illustrate ideas with pictures throughout. The reader should be warned however that they rarely show the real nature of the mathematical problem at hand. Some of the results are generalized to objects that are more abstract than polytopes. I have taken a pragmatical point of view with respect to the level of generality that theorems are stated and proved: If a generalization was asked for in the existing literature, it is provided (if possible). The following is a list of the main results in this thesis in order of appearance: The connectivity of (k,ℓ)-incidence graphs is determined for the case • ℓ 2k + 1 in Chapter 3.
    [Show full text]
  • Quantum Random Access Codes with Shared Randomness
    Quantum Random Access Codes with Shared Randomness Andris Ambainisa, Debbie Leungb, Laura Mancinskaa,b, Maris Ozolsa,b a Department of Computing, University of Latvia, Raina bulv. 19, Riga, LV-1586, Latvia b Department of Combinatorics and Optimization, and Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada October 2, 2008 Abstract We consider a communication method, where the sender encodes n classical bits into 1 qubit and sends it to the receiver who performs a certain measurement depending on which of the initial bits must be re- p covered. This procedure is called n 7! 1 quantum random access code (QRAC) where p > 1=2 is its success probability. It is known that 2 7−!0:85 1 p and 3 7−!0:79 1 QRACs (with no classical counterparts) exist and that 4 7! 1 QRAC with p > 1=2 is not possible. We extend this model with shared randomness (SR) that is accessible p to both parties. Then n 7! 1 QRAC with SR and p > 1=2 exists for any n ≥ 1. We give an upper bound on its success probability (the known 2 7−!0:85 1 and 3 7−!0:79 1 QRACs match this upper bound). We discuss some particular constructions for several small values of n. We also study the classical counterpart of this model where n bits are encoded into 1 bit instead of 1 qubit and SR is used. We give an optimal construction for such code and find its success probability exactly { it is less than in the quantum case.
    [Show full text]
  • Constructions of Cubical Polytopes Alexander Schwartz
    Constructions of Cubical Polytopes Alexander Schwartz Berlin 2004 D 83 Constructions of Cubical Polytopes vorgelegt von Diplom-Mathematiker Alexander Schwartz der Fakult¨at II { Mathematik und Naturwissenschaften der Technischen Universit¨at Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften { Dr. rer. nat. { genehmigte Dissertation Promotionsausschuss: Berichter: Prof. Dr. Gun¨ ter M. Ziegler Prof. Dr. Martin Henk Vorsitzender: Prof. Dr. Alexander Bobenko Tag der wissenschaftlichen Aussprache: 16. Januar 2004 Berlin 2004 D 83 Abstract In this thesis we consider cubical d-polytopes, convex bounded d-dimensional polyhedra all of whose facets are combinatorially isomorphic to the (d − 1)- dimensional standard cube. It is known that every cubical d-polytope P determines a PL immersion of an abstract closed cubical (d−2)-manifold into the polytope boundary @P ∼= Sd−1. The immersed manifold is orientable if and only if the 2-skeleton of the cubical d-polytope (d ≥ 3) is \edge orientable" in the sense of Hetyei. He conjectured that there are cubical 4-polytopes that are not edge-orientable. In the more general setting of cubical PL (d − 1)-spheres, Babson and Chan have observed that every type of normal crossing PL immersion of a closed PL (d−2)-manifold into an (d−1)-sphere appears among the dual manifolds of some cubical PL (d − 1)-sphere. No similar general result was available for cubical polytopes. The reason for this may be blamed to a lack of flexible construction techniques for cubical polytopes, and for more general cubical complexes (such as the \hexahedral meshes" that are of great interest in CAD and in Numerical Analysis).
    [Show full text]