Chapter 1: Orbitals and Bonding Chapter 1 Topics: Bonding Concepts

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1: Orbitals and Bonding Chapter 1 Topics: Bonding Concepts Chapter 1: Orbitals And Bonding Chapter 1 Topics: Bonding Concepts Look back at “Chemistry, The Central Science” by Brown, Lemay, Bursten! Ionization Potential (Ch. 8) Quantum Numbers (Ch. 8) Ionic Bonds (Ch. 8) Electronic Configuration (Ch. 8) Hund’s Rule (Ch. 8) Pauli Exclusion Principle (Ch. 8) Aufbau Principle (Ch. 8) Atomic Orbitals (Ch. 8) Lewis Structures (Ch. 8) Dipole Moment (Ch. 8) Electronegativity (Ch. 8) Valence Electrons (Ch. 8) Octet Rule (Ch. 8) Resonance Structures (Ch. 8) Bond Dissociation Energy (Ch. 8) Formal Charge (Ch. 8) Covalent Bonds (Ch. 8/9) Nodes (Ch. 8/9) Wave Functions (Ch. 9) Molecular Orbitals (Ch. 9) Orbital Nomenclature Organic Chemists usually don’t use quantum numbers – but we have to remember the correlations: principal quantum number (n) azimuthal quantum number (l) y Shell 1: One S orbital (1s) g r e n Shell 2: One S, three P (2s, 2p) E r e h Shell 3: One S, three P, five D (3s, 3p, 3d) g i H Shell 4: One S, three P, five D, seven F (4s, 4p, 4d, 4f) The three P orbitals are designated Px, Py, Pz (different spacial orientations). magnetic quantum number (m) Ionic Bonding Ionic bonds: One atom transfers electron to another. Molecule held together by electostatic (magnetic) forces. Formed between two atoms of very different electonegativities (>2.0 electronegativity difference) Li F Li F or LiF Loss of one electron will Addition of one electron lead to a completely will lead to a completely empty valence shell filled valence shell (full octet) Atoms are especially stable when all of the valence orbitals are either completely filled or completely empty (the "noble gas" configuration). This has been adapted to the octet rule: (most) atoms are stable when there are 8 electrons in their outermost (valence) shell. For this course: 1st & 2nd row atoms can never have more than 8 valence electrons and/or 4 valence orbitals!!! Electronegativity Electronegativity and Percent Covalency Covalent Bonding Covalent bonds: Two atoms share electrons. Both atoms can count the shared electrons toward their octet. This type of bond is formed between two atoms of similar electonegativities (<2.0 electronegativity difference) H + H H H or H H or H2 Sharing one additional Sharing one additional electron will lead to a electron will lead to a A line (bond) signifies completely filled valence completely filled valence 2 shared electrons shell shell Both hydrogens have a filled valence shell (shared electrons count for both atoms) Polar Covalent Bonding H F or H F or HF !+ !– H F Electronegativity 2.1 Electronegativity 4.0 Fluorine has a higher electronegativity, and will "pull" electrons toward itself causing bond polarization. This creates a dipole along the bond axis. Identical atoms will share electrons equally: a nonpolar covalent bond. Nonidentical atoms will not share electrons equally: a polar covalent bond. Writing Lewis Structures Lewis Structures: Represent connectivity of a chemical species. Dots reach represent one electron; lines represent a shared electron pair; atomic symbols represent the nucleus and all non-valence electrons. Nonbonding electron pairs are frequently omitted! Writing Lewis Structures Lewis Structures: Represent connectivity of a chemical species. Dots reach represent one electron; lines represent a shared electron pair; atomic symbols represent the nucleus and all non-valence electrons. Nonbonding electron pairs are frequently omitted! H H H NH 3 N H N H or N H ammonia H H H Writing Lewis Structures Lewis Structures: Represent connectivity of a chemical species. Dots reach represent one electron; lines represent a shared electron pair; atomic symbols represent the nucleus and all non-valence electrons. Nonbonding electron pairs are frequently omitted! H CCH 2 2 H C C H H C C H ethylene H H H H H H H C C H or C C H H H H Writing Lewis Structures Lewis Structures: Represent connectivity of a chemical species. Dots reach represent one electron; lines represent a shared electron pair; atomic symbols represent the nucleus and all non-valence electrons. Nonbonding electron pairs are frequently omitted! O O H H H H H3CS(O)CH3 H C S C H H C S C H dimethylsulfoxide H H H H O H H H H O H C S C H H C S C H H H H H Formal Charge = Valence e– – Nonbonding e– – 1/2 Bonding e– Atomic Orbitals: A Brief Review node (nodal plane) A 1s orbital A 2p orbital Atomic Orbitals: A Brief Review In General, electrons are lower in energy if: 1. They are closer to a positive charge 2. They are in an orbital with fewer nodes 3. They have a larger orbital space to occupy Molecular Orbitals: A Brief Review Mixing orbitals of opposite phase: leads H H to an antibonding interaction that is destabilizing (higher in energy than the atomic orbitals) H H or H H H H Mixing orbitals with same phase: leads to a bonding interaction that is stabilizing (lower in energy than the atomic orbitals) Molecular Orbitals: A Brief Review node (nodal plane) !* H–H H H a !*-orbital (antibonding) H H H H a !-orbital (bonding) ! H–H Molecular Orbitals: A Brief Review !* H–H H H a !*-orbital (antibonding) y g H r H e n E 52 kcal/mol H H a !-orbital (bonding) ! H–H Electrons are 52 kcal/mol (per electron) more stable in a σ H–H orbital (larger orbital space) than in a hydrogen 1s orbital. Molecular Orbitals: A Brief Review bond formation H + H H H exothermic by 104 Kcal/mol (!H = –104 Kcal/mol) bond cleavage (BDE) H H H + H endothermic by 104 Kcal/mol (!H = +104 Kcal/mol) The bond dissociation energy (BDE) is the energy required to break a bond homolytically (into a diradical). BDE (H2) = 104 Kcal/mol Molecular Orbitals: A Brief Review Mixing orbitals of opposite phase: leads C C to an antibonding interaction that is destabilizing (higher in energy than the atomic orbitals) C C or C C C C Mixing orbitals with same phase: leads to a bonding interaction that is stabilizing (lower in energy than the atomic orbitals) Molecular Orbitals: A Brief Review !* C–C C C a !*-orbital (antibonding) C C a !-orbital (bonding) C C ! C–C All mutiple bonds that we will encounter will be !-type Curved Arrow Notation Curved arrows are used to designate the movement or flow of electrons. the electrons start here (a filled orbital) correct H O + H H O H this atom has the empty orbital to receive the electrons X incorrect H O + H H O H Resonance Structures Resonance Structures allow Lewis Structures to describe multicenter bonding (more than 2 atoms sharing electrons). There are also situations where resonance structures are used to show bond polarization. O3 O O O O O O O O O ozone O O O O O O O O O +1 A more accurate single representation: –1/2 O –1/2 O O.
Recommended publications
  • Structure and Bonding Electron Configurations in the Periodic Table
    Structure and Bonding The study of organic chemistry must at some point extend to the molecular level, for the physical and chemical properties of a substance are ultimately explained in terms of the structure and bonding of molecules. This module introduces some basic facts and principles that are needed for a discussion of organic molecules. Electronic Configurations Electron Configurations in the Periodic Table 1A 2A 3A 4A 5A 6A 7A 8A 1 2 H He 1 2 1s 1s 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 2 2 2 2 2 2 2 2 1s 1s 1s 1s 1s 1s 1s 1s 2s1 2s2 2s22p1 2s22p2 2s22p3 2s22p4 2s22p5 2s22p6 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] 3s1 3s2 3s23p1 3s23p2 3s23p3 3s23p4 3s23p5 3s23p6 Four elements, hydrogen, carbon, oxygen and nitrogen, are the major components of most organic compounds. Consequently, our understanding of organic chemistry must have, as a foundation, an appreciation of the electronic structure and properties of these elements. The truncated periodic table shown above provides the orbital electronic structure for the first eighteen elements (hydrogen through argon). According to the Aufbau principle, the electrons of an atom occupy quantum levels or orbitals starting from the lowest energy level, and proceeding to the highest, with each orbital holding a maximum of two paired electrons (opposite spins). Electron shell #1 has the lowest energy and its s-orbital is the first to be filled.
    [Show full text]
  • VSEPR Theory
    VSEPR Theory The valence-shell electron-pair repulsion (VSEPR) model is often used in chemistry to predict the three dimensional arrangement, or the geometry, of molecules. This model predicts the shape of a molecule by taking into account the repulsion between electron pairs. This handout will discuss how to use the VSEPR model to predict electron and molecular geometry. Here are some definitions for terms that will be used throughout this handout: Electron Domain – The region in which electrons are most likely to be found (bonding and nonbonding). A lone pair, single, double, or triple bond represents one region of an electron domain. H2O has four domains: 2 single bonds and 2 nonbonding lone pairs. Electron Domain may also be referred to as the steric number. Nonbonding Pairs Bonding Pairs Electron domain geometry - The arrangement of electron domains surrounding the central atom of a molecule or ion. Molecular geometry - The arrangement of the atoms in a molecule (The nonbonding domains are not included in the description). Bond angles (BA) - The angle between two adjacent bonds in the same atom. The bond angles are affected by all electron domains, but they only describe the angle between bonding electrons. Lewis structure - A 2-dimensional drawing that shows the bonding of a molecule’s atoms as well as lone pairs of electrons that may exist in the molecule. Provided by VSEPR Theory The Academic Center for Excellence 1 April 2019 Octet Rule – Atoms will gain, lose, or share electrons to have a full outer shell consisting of 8 electrons. When drawing Lewis structures or molecules, each atom should have an octet.
    [Show full text]
  • The Quantum Mechanical Model of the Atom
    The Quantum Mechanical Model of the Atom Quantum Numbers In order to describe the probable location of electrons, they are assigned four numbers called quantum numbers. The quantum numbers of an electron are kind of like the electron’s “address”. No two electrons can be described by the exact same four quantum numbers. This is called The Pauli Exclusion Principle. • Principle quantum number: The principle quantum number describes which orbit the electron is in and therefore how much energy the electron has. - it is symbolized by the letter n. - positive whole numbers are assigned (not including 0): n=1, n=2, n=3 , etc - the higher the number, the further the orbit from the nucleus - the higher the number, the more energy the electron has (this is sort of like Bohr’s energy levels) - the orbits (energy levels) are also called shells • Angular momentum (azimuthal) quantum number: The azimuthal quantum number describes the sublevels (subshells) that occur in each of the levels (shells) described above. - it is symbolized by the letter l - positive whole number values including 0 are assigned: l = 0, l = 1, l = 2, etc. - each number represents the shape of a subshell: l = 0, represents an s subshell l = 1, represents a p subshell l = 2, represents a d subshell l = 3, represents an f subshell - the higher the number, the more complex the shape of the subshell. The picture below shows the shape of the s and p subshells: (notice the electron clouds) • Magnetic quantum number: All of the subshells described above (except s) have more than one orientation.
    [Show full text]
  • Essential Questions and Objectives
    Essential Questions and Objectives • How does the configuration of electrons affect the atom’s properties? You’ll be able to: – Draw an orbital diagram for an element – Determine the electron configuration for an element – Explain the Pauli exclusion principle, Aufbau principle and Hund’s Rule Warm up Set your goals and curiosities for the unit on your tracker. Have your comparison table out for a stamp Bohr v QMM What are some features of the quantum mechanical model of the atom that are not included in the Bohr model? Quantum Mechanical Model • Electrons do not travel around the nucleus of an atom in orbits • They are found in energy levels at different distances away from the nucleus in orbitals • Orbital – region in space where there is a high probability of finding an electron. Atomic Orbitals Electrons cannot exist between energy levels (just like the rungs of a ladder). Principal quantum number (n) indicates the relative size and energy of atomic orbitals. n specifies the atom’s major energy levels also called the principal energy levels. Energy sublevels are contained within the principal energy levels. Ground-State Electron Configuration The arrangement of electrons in the atom is called the electron configuration. Shows where the electrons are - which principal energy levels, which sublevels - and how many electrons in each available space Orbital Filling • The order that electrons fill up orbitals does not follow the order of all n=1’s, then all n=2’s, then all n=3’s, etc. Electron configuration for... Oxygen How many electrons? There are rules to follow to know where they go ..
    [Show full text]
  • 8.3 Bonding Theories >
    8.3 Bonding Theories > Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Molecular Orbitals How are atomic and molecular orbitals related? 2 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals • The model you have been using for covalent bonding assumes the orbitals are those of the individual atoms. • There is a quantum mechanical model of bonding, however, that describes the electrons in molecules using orbitals that exist only for groupings of atoms. 3 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals • When two atoms combine, this model assumes that their atomic orbitals overlap to produce molecular orbitals, or orbitals that apply to the entire molecule. 4 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Just as an atomic orbital belongs to a particular atom, a molecular orbital belongs to a molecule as a whole. • A molecular orbital that can be occupied by two electrons of a covalent bond is called a bonding orbital. 5 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Sigma Bonds When two atomic orbitals combine to form a molecular orbital that is symmetrical around the axis connecting two atomic nuclei, a sigma bond is formed. • Its symbol is the Greek letter sigma (σ).
    [Show full text]
  • Chemical Bonding & Chemical Structure
    Chemistry 201 – 2009 Chapter 1, Page 1 Chapter 1 – Chemical Bonding & Chemical Structure ings from inside your textbook because I normally ex- Getting Started pect you to read the entire chapter. 4. Finally, there will often be a Supplement that con- If you’ve downloaded this guide, it means you’re getting tains comments on material that I have found espe- serious about studying. So do you already have an idea cially tricky. Material that I expect you to memorize about how you’re going to study? will also be placed here. Maybe you thought you would read all of chapter 1 and then try the homework? That sounds good. Or maybe you Checklist thought you’d read a little bit, then do some problems from the book, and just keep switching back and forth? That When you have finished studying Chapter 1, you should be sounds really good. Or … maybe you thought you would able to:1 go through the chapter and make a list of all of the impor- tant technical terms in bold? That might be good too. 1. State the number of valence electrons on the following atoms: H, Li, Na, K, Mg, B, Al, C, Si, N, P, O, S, F, So what point am I trying to make here? Simply this – you Cl, Br, I should do whatever you think will work. Try something. Do something. Anything you do will help. 2. Draw and interpret Lewis structures Are some things better to do than others? Of course! But a. Use bond lengths to predict bond orders, and vice figuring out which study methods work well and which versa ones don’t will take time.
    [Show full text]
  • Electron Configurations, Orbital Notation and Quantum Numbers
    5 Electron Configurations, Orbital Notation and Quantum Numbers Electron Configurations, Orbital Notation and Quantum Numbers Understanding Electron Arrangement and Oxidation States Chemical properties depend on the number and arrangement of electrons in an atom. Usually, only the valence or outermost electrons are involved in chemical reactions. The electron cloud is compartmentalized. We model this compartmentalization through the use of electron configurations and orbital notations. The compartmentalization is as follows, energy levels have sublevels which have orbitals within them. We can use an apartment building as an analogy. The atom is the building, the floors of the apartment building are the energy levels, the apartments on a given floor are the orbitals and electrons reside inside the orbitals. There are two governing rules to consider when assigning electron configurations and orbital notations. Along with these rules, you must remember electrons are lazy and they hate each other, they will fill the lowest energy states first AND electrons repel each other since like charges repel. Rule 1: The Pauli Exclusion Principle In 1925, Wolfgang Pauli stated: No two electrons in an atom can have the same set of four quantum numbers. This means no atomic orbital can contain more than TWO electrons and the electrons must be of opposite spin if they are to form a pair within an orbital. Rule 2: Hunds Rule The most stable arrangement of electrons is one with the maximum number of unpaired electrons. It minimizes electron-electron repulsions and stabilizes the atom. Here is an analogy. In large families with several children, it is a luxury for each child to have their own room.
    [Show full text]
  • Atomic Structure and Bonding
    IM2665 Chemistry of Nanomaterials Atomic Structure and Bonding Assoc. Prof. Muhammet Toprak Division of Functional Materials KTH Royal Institute of Technology Background • Electromagnetic waves • Materials wave motion, • Quantified energy and – Louis de Broglie (1892-1987) photons • Uncertainity principle – Max Planck (1858-1947) – Werner Heisenberg (1901-1976) – Albert Einstein (1879-1955) • Schrödinger equation • Bohr’s atom model – Erwin Schrödinger (1887-1961) – Niels Bohr (1885-1962) IM2657 Nanostr. Mater. & Self Assembly 2 Electromagnetic Spectrum Visible light is only a small part of the Electromagnetic Spectrum IM2657 Nanostr. Mater. & Self Assembly 3 Electromagnetic Waves • Wavemotion is defined by • Calculations – ν = Frequency ( Hz) – c = ν × λ – λ = wavelength (m) – c = 3,00 × 108 m/s (speed of light) IM2657 Nanostr. Mater. & Self Assembly 4 Quantified Energy and Photons • E = h × ν; where h = 6,63 × 10-34 J s (Planck’s constant) • Photoelectric Effect (1905) IM2657 Nanostr. Mater. & Self Assembly 5 Thomson´s Pudding Model For a helium atom, the model proposes a large spherical cloud with two units of positive charge. Th e two electrons lie on a line through the center of the cloud. The loss of one electron produces the He+1 ion, with the remaining electron at the center of the cloud. The loss of a second electron prod uces He+2 , in which there is just a cloud of positive charge. IM2657 Nanostr. Mater. & Self Assembly 6 Rutherford’s Experiment The notion that atoms consist of very small nuclei containing protons and neutrons surrounded by a much larger cloud of electrons was IM2657 Nanostr. Mater. & Self Assembly 7 developed from an α particle scattering experiment.
    [Show full text]
  • Unit 3 Electrons and the Periodic Table
    UNIT 3 ELECTRONS AND THE PERIODIC TABLE Chapter 5 & 6 CHAPTER 5: ELECTRONS IN ATOMS WHAT ARE THE CHEMICAL PROPERTIES OF ATOMS AND MOLECULES RELATED TO? • ELECTRONS! • Number of valence electrons • How much an atom wants to “gain” or “lose” electrons • How many electrons “gained” or “lost” ELECTRON HISTORY • Dalton’s Model • Didn’t even know of electrons or charge – just ratios of atoms. • Thomson’s Model • ELECTRONS EXIST!!!! • Where are they? No clue. • Plum Pudding? • Rutherford’s Model • Gold Foil Experiment • Electrons are found outside the nucleus. • Now knows where they are, but still doesn’t know how they are organized. Rutherford’s model BOHR’S MODEL • Electron’s are found in energy levels. Quantum: Specific energy values that have exact values in between them. • Pictured the atom like a solar system with electrons “orbiting” around the nucleus. • Each orbit path associated with a particular energy. • Now a better understanding of how electrons are organized, but it still isn’t quite correct. QUANTUM MECHANICAL MODEL ERWIN SCHRODINER (1926) • Electrons are found in regions of empty space around the nucleus. “electron clouds”. • Shape of the region corresponds to different energy levels. • Shape of the region represents the probability of the electron’s location 90% of the time. • PROBLEM? These are still called “atomic orbitals”. SCHRODINGER’S MODEL • Electrons are “wave functions”. • We can’t actually know exactly where an electron is at any moment. • We can know a probability of an electrons location based on its energy. • Ex: a windmill blade ATOMIC ORBITALS • Shape describing the probability of finding an electron at various locations around the nucleus.
    [Show full text]
  • VSEPR Molecular Geometry Tutorial
    Constructing Molecular Shapes A Tutorial on Writing the Shape of Molecules Dr. Fred Omega Garces Chemistry 100 Miramar College 1 Determining Molecular Shape 10.7.00 10:09 PM VSEPR- Valence Shell Electron-Pair Repulsion Theory Main premise of model- Valence electron pair repel each other in molecule with shapes the molecule Molecule assumes Geometry that minimizes electrostatic repulsion: Occurs when electron pair are far apart as possible. Driving force is the Pauli exclusion principle : 2 electrons with same spin can't occupy the same space. Electronic Geometry is the geometry around the central atom in which electron-electron repulsion is minimize. AEn (system) Molecular Geometry is geometry around central atom when electron pairs are replace by bonding atoms and the nonbonding electrons are ignored. ABmEn (system) 2 Determining Molecular Shape 10.7.00 10:09 PM VSEPR- Procedural Steps 1) Determine the Lewis Structure. a) Valence electrons for each atom in the structure. b) Determine the atomic sequence, the number of bonds, remaining electrons c) Write Lewis structure with each atom obeying the octet rule Example: HNO3 ( See Lewis Structure Tutorial) O N O O H 3 Determining Molecular Shape 10.7.00 10:09 PM VSEPR- Procedural Steps 2) Determine electronic geometry (AEn system) from Lewis structure. a) Count the electron domain (region) around the central atom. b) Arrange electron domain to minimize electron-electron repulsion. Occurs when electron pair are far apart as possible. c) 2-domainglinear, 3-domaingtrigonal, 4-domaingtetrahedral O N O Example: HNO3 O Central Atoms, N and O H O N O O N: Three electron domain AE3 Trigonal H O N O O: Four electron domain O AE4 Tetrahedral H 4 Determining Molecular Shape 10.7.00 10:09 PM VSEPR- Procedural Steps 3) Determine molecule geometry (ABmEn) from electronic geometry.
    [Show full text]
  • Amine-Based Zinc(II), Copper(II), and Oxidovanadium(IV) Complexes: SOD Scavenging, DNA Binding, and Anticancer Activities
    Int. J. Electrochem. Sci., 7 (2012) 7526 - 7546 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Synthesis, Characterization, and Electrochemical Properties of Bis(2-benzimidazolylmethyl-6-sulfonate)amine-based zinc(II), copper(II), and oxidovanadium(IV) Complexes: SOD Scavenging, DNA binding, and Anticancer Activities Mohamed M. Ibrahim1,2, Gaber A. M. Mersal1,3, Samir A. El-Shazly4,5, Abdel-Motaleb M. Ramadan2 1 Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia 2 Departmentof Chemistry, Faculty of Science, Kafr El-Sheikh University, Egypt 3 Department of Chemistry, Faculty of Science, South Valley University, Qena, Egypt 4 Departmentof Biochemistry, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Egypt 5 Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia *E-mail: [email protected] Received: 8 June 2012 / Accepted: 9 July 2012 / Published: 1 August 2012 The synthesis of a tridentate ligand, bis(2-benzimidazolylmethyl-6-sulfonate)amine H2SBz is described together with its zinc(II), copper(II), and oxidovanadium(IV) complexes [SBz-M(H2O)2] (M = Zn2+ 1, Cu2+ 2, and VO2+ 3). The ligand and its metal complexes 1-3 were characterized based on elemental analysis, conductivity measurements, spectral, and magnetic studies. The magnetic and spectroscopic data indicate a square pyramidal geometry is proposed for all complexes. The redox properties of the ligand and its complexes 1-3 were extensively investigated by using cyclic voltammetry. Complexes 1 and 2 exhibited quasi-reversible single electron transfer process. Whereas in complex 3, only one electron oxidation peak was observed at + 0.72 V, which is due to the oxidation of VIV to VV.
    [Show full text]
  • The Scope of Inorganic Chemistry
    The Scope of Inorganic Chemistry Medicine Biochemistry/Biology Organic Chemistry •MRI • metalloproteins • organometallics •X-ray contrast imaging • metalloenzymes • metal compounds in •drugs (arthritis, cancer,… • O2 binding synthesis/catalysis • catalysis • ion transport INORGANIC CHEMISTRY • new compounds • geometrical and electronic structures • reactivity Materials Science Organometallic Geology/Geochemistry • electrical and magnetic Chemistry • synthesis and structure properties of solids • new compounds of minerals • solid state structures • structures • stellar evolution • semiconductors • catalysis • astrochemistry • superconductors (high Tc) If some universal catastrophe were to engulf the world, and humankind Could retain one scientific concept in order to rebuild civilization, what would that one concept be? Response for physicists (Richard Feynman in “Six Easy Pieces”): The modern idea of atoms. Response for chemists: The periodic table The periodic table encapsulates the concept of elements, organizes physical and chemical trends of substances, and compares the structure of the different atoms— All in a very small space. Inorganic Chemists think they own the Periodic Table. So, How did it all start? 4 8 Be with t1/2 of ca. 10-18 sec 6 2 4 3Li + 1H 2 2He + Energy Stable vs. Unstable or Fissionable Nuclei Project no. 1. Nuclear Reactions; Web Elements WebElementsTM Periodic Table Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Period 1 2 1 H He 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 3 Na Mg Al Si P
    [Show full text]