Plants and Ecology 2011:3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fossil Mosses: What Do They Tell Us About Moss Evolution?
Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca. -
Polytrichaceae – Hair Cap Moss Family
POLYTRICHACEAE – HAIR CAP MOSS FAMILY Plant: moss (tend to be larger and more noticeable than most mosses) Stem: mostly erect Root: rhizoids (no root) Leaves: mostly narrowly lanceolate (although quite variable), spirally arranged on stem, lamellae along leaf nerves, often with toothed leaf margins, leaves sharp pointed, most have a hyaline basal sheath Flowers: dioecious; gametophyte (leafy) with sporophyte born at tip of gametophyte (gametophyte generation dimorphic); sporophtyte – setea often long and solitary, capsule 2 to 6 angled (shape variable), calyptra usually of matted or felted hair, single row of (16?) 32 or 64 teeth on peristome Fruit: Other: forms mats or patches; common throughout NA and CAN (not found in some southwest states); prefers acidic conditions Genera: 22+ genera *** species descriptions are general - for full ID see professional texts for full descriptions (sometimes microscopic details are necessary) WARNING – family descriptions are only a layman’s guide and should not be used as definitive POLYTRICHACEAE – HAIR CAP MOSS FAMILY Common Hair Cap [Polytrichum] Moss; Polytrichum commune Hedw. A Polytrichum (Hair Cap) Moss; Polytrichum piliferum Hedw. Common Hair Cap [Polytrichum] Moss Polytrichum commune Hedw. Polytrichaceae (Hair Cap Moss Family) Oak Openings Metropark, Lucas County, Ohio Notes: antheridia (male) rossettes greenish yellow; seta yellowish brown to red, calyptra of yellowish to brownish hair, capsule rectangular to somewhat cubic; leaves erect to spreading, tips recurved, finely toothed from base to tip, large clasping sheath, awn short; plants medium to tall, in mats or clumps in moist areas; most of NA and CAN except some southwestern states ; spring [V Max Brown, 2009] A Polytrichum (Hair Cap) Moss Polytrichum piliferum Hedw. -
Curitiba, Southern Brazil
data Data Descriptor Herbarium of the Pontifical Catholic University of Paraná (HUCP), Curitiba, Southern Brazil Rodrigo A. Kersten 1,*, João A. M. Salesbram 2 and Luiz A. Acra 3 1 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil 2 REFLORA Project, Curitiba, Brazil; [email protected] 3 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-3721-2392 Academic Editor: Martin M. Gossner Received: 22 November 2016; Accepted: 5 February 2017; Published: 10 February 2017 Abstract: The main objective of this paper is to present the herbarium of the Pontifical Catholic University of Parana’s and its collection. The history of the HUCP had its beginning in the middle of the 1970s with the foundation of the Biology Museum that gathered both botanical and zoological specimens. In April 1979 collections were separated and the HUCP was founded with preserved specimens of algae (green, red, and brown), fungi, and embryophytes. As of October 2016, the collection encompasses nearly 25,000 specimens from 4934 species, 1609 genera, and 297 families. Most of the specimens comes from the state of Paraná but there were also specimens from many Brazilian states and other countries, mainly from South America (Chile, Argentina, Uruguay, Paraguay, and Colombia) but also from other parts of the world (Cuba, USA, Spain, Germany, China, and Australia). Our collection includes 42 fungi, 258 gymnosperms, 299 bryophytes, 2809 pteridophytes, 3158 algae, 17,832 angiosperms, and only one type of Mimosa (Mimosa tucumensis Barneby ex Ribas, M. -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M. -
Bryophyte Ecology Table of Contents
Glime, J. M. 2020. Table of Contents. Bryophyte Ecology. Ebook sponsored by Michigan Technological University 1 and the International Association of Bryologists. Last updated 15 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. This file will contain all the volumes, chapters, and headings within chapters to help you find what you want in the book. Once you enter a chapter, there will be a table of contents with clickable page numbers. To search the list, check the upper screen of your pdf reader for a search window or magnifying glass. If there is none, try Ctrl G to open one. TABLE OF CONTENTS BRYOPHYTE ECOLOGY VOLUME 1: PHYSIOLOGICAL ECOLOGY Chapter in Volume 1 1 INTRODUCTION Thinking on a New Scale Adaptations to Land Minimum Size Do Bryophytes Lack Diversity? The "Moss" What's in a Name? Phyla/Divisions Role of Bryology 2 LIFE CYCLES AND MORPHOLOGY 2-1: Meet the Bryophytes Definition of Bryophyte Nomenclature What Makes Bryophytes Unique Who are the Relatives? Two Branches Limitations of Scale Limited by Scale – and No Lignin Limited by Scale – Forced to Be Simple Limited by Scale – Needing to Swim Limited by Scale – and Housing an Embryo Higher Classifications and New Meanings New Meanings for the Term Bryophyte Differences within Bryobiotina 2-2: Life Cycles: Surviving Change The General Bryobiotina Life Cycle Dominant Generation The Life Cycle Life Cycle Controls Generation Time Importance Longevity and Totipotency 2-3: Marchantiophyta Distinguishing Marchantiophyta Elaters Leafy or Thallose? Class -
Occurrence of the Green Shield-Moss Buxbaumia Viridis (Moug.) Brid
Article Occurrence of the Green Shield-Moss Buxbaumia viridis (Moug.) Brid. in the Bieszczady Mountains of Poland Piotr Brewczy ´nski 1, Kamil Grałek 2 and Piotr Bila ´nski 3,* 1 Głogów Forest District, ul. Fabryczna 57, 36-060 Głogów Małopolski, Poland; [email protected] 2 The Regional Directorate of the State Forests in Krosno, ul. Bieszczadzka 2, 38-400 Krosno, Poland; [email protected] 3 Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland * Correspondence: [email protected]; Tel.: +48-1266-253-69 Abstract: The small-sized gametophytes and sporophytes of the green shield-moss Buxbaumia viridis (Moug.) Brid. make it difficult to study. However, in Europe, there has been increasing interest in this species in the past few years, mostly as a result of the implementation of the Natura 2000 network. In Poland, B. viridis has only been reported in isolated studies that have been limited in terms of area and the number of participating workers. One of the Polish regions where B. viridis was recently recorded is the Bieszczady Mountains, but there have been no large-scale surveys of that region to date. The objective of the current work was to describe the B. viridis population in the Bieszczady Mountains in terms of its spatial distribution and abundance, investigate its selected microhabitat preferences, and evaluate the conservation status of this moss species within the Natura 2000 site Bieszczady PLC180001. The studied region encompassed 93,490.44 ha, including 69,056.23 ha of managed forests and 24,434.21 ha of forests belonging to the Bieszczady National Park. -
Endemic Genera of Bryophytes of North America (North of Mexico)
Preslia, Praha, 76: 255–277, 2004 255 Endemic genera of bryophytes of North America (north of Mexico) Endemické rody mechorostů Severní Ameriky Wilfred Borden S c h o f i e l d Dedicated to the memory of Emil Hadač Department of Botany, University Boulevard 3529-6270, Vancouver B. C., Canada V6T 1Z4, e-mail: [email protected] Schofield W. B. (2004): Endemic genera of bryophytes of North America (north of Mexico). – Preslia, Praha, 76: 255–277. There are 20 endemic genera of mosses and three of liverworts in North America, north of Mexico. All are monotypic except Thelia, with three species. General ecology, reproduction, distribution and nomenclature are discussed for each genus. Distribution maps are provided. The Mexican as well as Neotropical genera of bryophytes are also noted without detailed discussion. K e y w o r d s : bryophytes, distribution, ecology, endemic, liverworts, mosses, reproduction, North America Introduction Endemism in bryophyte genera of North America (north of Mexico) appears not to have been discussed in detail previously. Only the mention of genera is included in Schofield (1980) with no detail presented. Distribution maps of several genera have appeared in scattered publications. The present paper provides distribution maps of all endemic bryophyte genera for the region and considers the biology and taxonomy of each. When compared to vascular plants, endemism in bryophyte genera in the region is low. There are 20 genera of mosses and three of liverworts. The moss families Andreaeobryaceae, Pseudoditrichaceae and Theliaceae and the liverwort family Gyrothyraceae are endemics; all are monotypic. A total of 16 families of mosses and three of liverworts that possess endemic genera are represented. -
Establishment and Development of the Catherine’S Moss Atrichum Undulatum (Hedw.) P
Arch. Biol. Sci., Belgrade, 58 (2), 87-93, 2006. ESTABLISHMENT AND DEVELOPMENT OF THE CATHERINE’S MOSS ATRICHUM UNDULATUM (HEDW.) P. BEAUV. (POLYTRICHACEAE) IN IN VITRO CONDITIONS 1 ANETA SABOVLJEVIĆ1, 2, TIJANACVETIĆ andM. SABOVLJEVIĆ1, 3 1Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia and Montenegro 2Institute of Botany, University of Cologne, 50931 Cologne, Germany 3AG Bryology, Nees Institute of Botany, University of Bonn, 53115 Bonn, Germany Abstract - The effect of sucrose and mineral salts on morphogenesis of the Catherine’s moss (Atrichum undulatum)in in vitro culture was tested. In vitro culture of this species was established from disinfected spores on Murashige and Skoog (MS) medium. Apical shoots of gametophytes were used to investigate the influence of sucrose and mineral salts on protonemal and gametophyte growth and multiplication. Paper also treats morpho-anatomical characteristics of plants grown in nature and plants derived from in vitro culture. Key words: Brzophytes, morphogenesis, Catherine’s moss, growth, multiplication UDC 582.325.1:57.08 INTRODUCTION higher plants, (2) haploid gametophyte of the dominant vegetative phase, and (3) lower chromosome numbers The Catherine’s moss [Atrichum undulatum (Hedw.) P. (Gang et al., 2003). Cells of bryophytes, especially in Beauv.] is among the largest European terrestrial moss suspension culture, have been noted as ideal materials for species. It is widespread across Europe, and due to its morphogenetic, genetic, physiological, biochemical, and size is widely used in moss biology research (e.g., Be- molecular studies (O n o et al., 1988). querel, 1906; G e m m e l l, 1953; W o r d, 1960; Sitte, 1963; W o l t e r s, 1964; B r o w n and Lem- According to F e l i x (1994), 31 liverworts, 18 mon, 1987; O n o et al., 1987; L i n d e m a n n et al., mosses, and one hornwort have been used asexperimen- 1989; M i l e s and L o n g t o n, 1990; Stoneburn- tal objects in the sterile culture of bryophytes. -
The Potential Ecological Impact of Ash Dieback in the UK
JNCC Report No. 483 The potential ecological impact of ash dieback in the UK Mitchell, R.J., Bailey, S., Beaton, J.K., Bellamy, P.E., Brooker, R.W., Broome, A., Chetcuti, J., Eaton, S., Ellis, C.J., Farren, J., Gimona, A., Goldberg, E., Hall, J., Harmer, R., Hester, A.J., Hewison, R.L., Hodgetts, N.G., Hooper, R.J., Howe, L., Iason, G.R., Kerr, G., Littlewood, N.A., Morgan, V., Newey, S., Potts, J.M., Pozsgai, G., Ray, D., Sim, D.A., Stockan, J.A., Taylor, A.F.S. & Woodward, S. January 2014 © JNCC, Peterborough 2014 ISSN 0963 8091 For further information please contact: Joint Nature Conservation Committee Monkstone House City Road Peterborough PE1 1JY www.jncc.defra.gov.uk This report should be cited as: Mitchell, R.J., Bailey, S., Beaton, J.K., Bellamy, P.E., Brooker, R.W., Broome, A., Chetcuti, J., Eaton, S., Ellis, C.J., Farren, J., Gimona, A., Goldberg, E., Hall, J., Harmer, R., Hester, A.J., Hewison, R.L., Hodgetts, N.G., Hooper, R.J., Howe, L., Iason, G.R., Kerr, G., Littlewood, N.A., Morgan, V., Newey, S., Potts, J.M., Pozsgai, G., Ray, D., Sim, D.A., Stockan, J.A., Taylor, A.F.S. & Woodward, S. 2014. The potential ecological impact of ash dieback in the UK. JNCC Report No. 483 Acknowledgements: We thank Keith Kirby for his valuable comments on vegetation change associated with ash dieback. For assistance, advice and comments on the invertebrate species involved in this review we would like to thank Richard Askew, John Badmin, Tristan Bantock, Joseph Botting, Sally Lucker, Chris Malumphy, Bernard Nau, Colin Plant, Mark Shaw, Alan Stewart and Alan Stubbs. -
Recent Occurrence of Moss Buxbaumia Viridis (Bryophyta, Buxbaumiaceae) in the Kłodzko Region (Central and Eastern Sudetes, SW Poland)
ISSN 1211-3026 Čas. Slez. Muz. Opava (A), 60: 85-89, 2011 DOI: 10.2478/v10210-011-0010-y Recent occurrence of moss Buxbaumia viridis (Bryophyta, Buxbaumiaceae) in the Kłodzko region (Central and Eastern Sudetes, SW Poland) Beata Cykowska & Grzegorz Vončina Recent occurrence of moss Buxbaumia viridis (Bryophyta, Buxbaumiaceae) in the Kłodzko region (Central and Eastern Sudetes, SW Poland). – Čas. Slez. Muz. Opava (A), 60:85-89, 2011. Abstract: A rare epixylous moss, Buxbaumia viridis (Moug. ex Lam. & DC.) Brid. ex Moug. & Nestl., was searched at historical localities in the Kłodzko region, especially in Bialskie and Bystrzyckie Mts. The species was rediscovered at two localities in the upper part of the valley of Jedlnik stream on the east slope of Iwinka Mt. in Puszcza Śnieżnej Białki Nature Reserve. This paper presents data on autecology of B. viridis at one of the rediscovered localities as well as shows its current distribution in the Kłodzko region. Key words: Bryophyta, Buxbaumia viridis, threatened species, protected species, distribution, Puszcza Śnieżnej Białki Nature Reserve, Śnieżnicki Landscape Park, Bialskie Mts., Sudety Mts., Poland Introduction Buxbaumia viridis is one of two species in the genus known from Europe (Hill et al. 2006) and Poland (Ochyra & al. 2003). It is a boreal-montane moss which prefers primeval forests with coniferous wood on which it grows. The species is legally protected in Europe (Annex I of the Bern Convention; Annex II of the “Habitats-Fauna-Flora” directive) and is placed on the European Red-list for bryophytes (Schumacher & Martiny 1995). It has been placed in the group of endangered species (E category) of the Red List of Polish mosses (Żarnowiec &al. -
Flora of North America, Volume 27, 2007
24 ECONOMIC AND ETHNIC USES toothpicks or small twigs. Many gardeners apply mosses to loose soil, then trample the mosses once in place. Many planting techniques take advantage of the ability of bryophytes to grow from vegetative fragments. In experiments with Atrichum undulatum and Bryum argenteum, many fragments developed shoots, whereas upright stems usually failed to develop from protonemata started with spores (C. J. Miles and R. E. Longton 1990). C. Gillis (1991) explained how to prepare, plant, and maintain a moss garden. She described mixing a handful of moss, a can of beer, and a half teaspoon of sugar in a blender, then spreading the mixture 0.5 cm thick on the ground; it produced moss growth within five weeks. Others have successfully used buttermilk, egg whites, rice water, carrot water, potato water, and even just water as the medium instead of beer (V. L. Ellis 1992). Such mixtures are helpful in assuring that moss fragments adhere to rocks. In their “Fact sheet for moss gardening,” the American Horticultural Society recommended grinding dried moss and spreading it as powder, cautioning the gardener never to buy moss from a grower unless certain that the moss has been propagated by the seller and not taken from the wild. They recommended keeping the pH below 5.5 by applying sulfur, buttermilk, or aluminum sulfate. Successful starters can be grown from fragments between two moist sheets of cheesecloth (J. K. Whitner 1992), although spores can be used as well (J. McDowell 1968). Partially dried moss fragments must be spread over cheesecloth that overlies a sand-peatmoss or sawdust mix in a flat. -
Buxbaumia Viridis (DC.) Moung
Buxbaumia viridis (DC.) Moung. & Nestl. Status: State Working List Rank: G3G4SU General Description: Buxbaumia viridis is a small annual bryophyte that develops a sporophyte from an ephemeral protonema (Crum and Ander- son 1981). Because the gametophytic generation is very reduced and not persistent the only visible structure is the sporophyte. The seta is 5-8 mm long with a slightly swollen base. The capsule is 5-6 mm by 2.3-3 mm in size, flattened on the dorsal side and rounded on the ventral, not glossy, green when young and yellowish-brown to brown when mature. In mature capsules, the cuticle on the upper surface splits down the length of the urn and peels back along the margins. Identification Tips: Because this species lacks a perennially gameto- phyte generation, mature sporophytes must be present for identification. Young sporophytes are green, becoming yellowish-brown to brown, and the peristome teeth are visible. The primary feature used to separate Buxbaumia viridis from B. piperi is the cuticle on the upper surface of the capsule. In B. piperi, the cuticle peels back around the “mouth” of the capsule, while in B. viridis the cuticle tears the full length of the capsule and peels back along the margins of the urn. Buxbaumia aphylla, also a rare species, has a smaller, flattened disc-shaped, chestnut red capsule that has the cuticle peeling back around the “mouth” of the capsule. Range: Buxbaumia viridis is a Western North America - Western European disjunct species and is known in Washington from Clallam, Chelan, Cowlitz, Klickitat, Lewis, Okanogan, Pierce, Skamania, Snohomish, Whatcom and Yakima counties.