Mass Spectrometry Based Cellular Phosphoinositides Profiling and Phospholipid Analysis: a Brief Review

Total Page:16

File Type:pdf, Size:1020Kb

Mass Spectrometry Based Cellular Phosphoinositides Profiling and Phospholipid Analysis: a Brief Review EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 42, No. 1, 1-11, January 2010 Mass spectrometry based cellular phosphoinositides profiling and phospholipid analysis: A brief review Youngjun Kim1, Selina Rahman Shanta2, cult to identify the composition of phosphoinositides. Li-Hua Zhou2,3 and Kwang Pyo Kim2,4 Recent advances in mass spectrometric techniques, combined with established separation methods, have 1Department of Applied Biochemistry allowed the rapid and sensitive detection and quantifi- Konkuk University cation of a variety of lipid species including phospho- Chungbuk 380-701, Korea inositides. In this mini review, we briefly introduce 2Department of Molecular Biotechnology progress in profiling of cellular phosphoinositides us- Institute of Biomedical Science and Technology ing mass spectrometry. We also summarize current Konkuk University progress of matrices development for the analysis of Seoul 143-701, Korea cellular phospholipids using matrix-assisted laser de- 3Faculty of Chemical Engineering and Light Industry sorption/ionization mass spectrometry. The phospho- Guangdong University of Technology inositides profiling and phospholipids imaging will Guangzhou 510006, China help us to understand how they function in a biological 4Corresponding author: Tel, 82-2-2049-6051; system and will provide a powerful tool for elucidating E-mail, [email protected] the mechanism of diseases such as diabetes, cancer DOI 10.3858/emm.2010.42.1.001 and neurodegenerative diseases. The investigation of cellular phospholipids including phosphoinositides Accepted 1 September 2009 using electrospray ionization mass spectrometry and Available Online 4 November 2009 matrix-assisted laser desorption/ionization mass Abbreviations: APCI, atmospheric pressure chemical ionization; spectrometry will suggest new insights on human dis- ATT, 6-aza-2-thiothymine; CHCA, cyano-4-hydroxycinnamic acid; eases, and on clinical application through drug devel- CHCl3, chloroform; CID, collision-induced dissociation; DHB, opment of lipid related diseases. 2,5-dihydroxybenzoic acid; eIF4E, eukaryotic translation initiation factor 4E; ESI-MS, electrospray ionization mass spectrometry; Keywords: lipids; lipid metabolism disorders; phos- FAB-MS, fast atom bombardment mass spectrometry; IMS, imaging pholipids; phosphatidylinositols; spectrometry, mass, mass spectrometry; LC, liquid chromatography; MALDI-MS, electrospray ionization; spectrometry, mass, ma- matrix-assisted laser desorption/ionization mass spectrometry; trix-assisted laser desorption-ionization MALDI-TOF-MS, matrix-assisted laser desorption and ionization/time of flight mass spectrometry; MeOH, methanol; MS, mass spectrometry; MS/MS, tandem mass spectrometry; mTOR, Introduction mammalian target of rapamycin; PA, phosphatidic acids; PAF, platelet-activating factor; PDK1, phosphoinositide-dependent Lipids are an important class of cellular compo- kinase-1; PEps, phosphatidylethanolamine plasmalogens; PH, nents and play diverse roles in human physiology. pleckstrin homology; PI3K, phosphoinositide 3-kinase; PIP, Although they are important, the study of lipids has phosphatidylinositol phosphate; PIP2, phosphatidylinositol bispho- been limited by analytical difficulties. However, sphate; PIP3, phosphatidylinositol-3,4,5-trisphosphate; PKB/Akt, recently improved analytical methods, such as protein kinase B or Akt; S/N, signal to noise; SA, sinapinic acid; mass spectrometry (MS) and liquid chromato- TFA, trifluoroacetic acid; TLC, thin layer chromatography graphy (LC) provide systems-level investigation in lipid research (Wenk, 2005). This systems-level analysis of lipids (lipidomics) is a growing field with different applications in drug and biomarker deve- Abstract lopment. There are various efforts to explore abnormal lipid metabolism in human diseases, Phospholipids are key components of cellular mem- such as insulin-resistant diabetes, Alzheimer's brane and signaling. Among cellular phospholipids, disease, schizophrenia, cancer, atherosclerosis, phosphoinositides, phosphorylated derivatives of and infectious diseases through lipidomics phosphatidylinositol are important as a participant in approach using mass spectrometry (Oresic et al., essential metabolic processes in animals. However, 2008). Lipidomics will contribute to drug deve- due to its low abundance in cells and tissues, it is diffi- lopment for pharmaceutical therapy of lipid related 2 Exp. Mol. Med. Vol. 42(1), 1-11, 2010 diseases through mostly presenting cellular lipid ESI-MS and phospholipid analysis using MALDI-MS profile and lipid distribution in a tissue. in this review. A brief suggestion on clinical Electrospray ionization (ESI)-MS was initially applications of phosphoinositide profiling and developed by Fenn and colleagues for analysis of phospholipid analysis using mass spectrometry is biomolecules (Fenn et al., 1989). It depends on the additionally given. formation of gaseous ions from polar, thermally labile and mostly non-volatile molecules. The "soft" electrospray ionization causes little or no fragmen- Profiling of cellular phosphoinositides tation and virtually all phospholipid species are using ESI mass spectrometry detected as molecular ion species. The identifi- cation and structural information about a certain Phosphoinositides are phospholipids with an peak is acquired by fragmentation (tandem mass inositol head groups. They have a central position spectrometry, MS/MS) (Han and Gross, 1994; Kim in the fields of cell signaling and regulation, et al., 1994). Advances in mass spectrometry (MS) including calcium homeostasis, membrane traffic- have created powerful new avenues for the king and cytoskeletal dynamics (Di Paolo and De measurement of global changes in the cellular lipid Camilli, 2006). They are able to achieve signaling inventory. effects directly by binding to cytosolic proteins or Electrospray ionization (ESI) mass spectrometry cytosolic domains of membrane proteins via their has been successfully used to analyze lipids in polar head groups (Figure 1). In this way, they can various cell types. However, for less abundant and regulate the function of proteins integral to more complicated chemical compositions, HPLC is membranes, or they can attract cytoskeletal and needed for upfront separation before ionization by signaling components to the membrane (Di Paolo ESI and detection by MS (Watson, 2006). In the field of lipidomics HPLC or TLC have been coupled with electrospray ionization (ESI)/atmospheric pressure chemical ionization (APCI)-MS and matrix-assisted laser desorption/ionization (MALDI)-MS, respectively (Wenk, 2005). These methods provide the iden- tification of lipid composition and quantification of cellular lipids, such as fatty acids, phospholipids, cholesterols, and sphingolipids. The identification of lipid composition and quan- tification of cellular lipids provide molecular signature for a lipid related pathway. One of the most obvious applications of lipidomics will include profiling lipid extracts in order to identify metabolic pathways and enzymes that are affected (Wenk, 2005). A major advantage of such lipidomics-ba- sed discovery is that, together with our relatively good understanding of many biosynthetic and metabolic pathways, it will lead to the identification of pathways and enzymes governing human diseases (Cascante et al., 2002). A recent review (Wenk, 2005) well summarized diverse aspects and fundamental principles of lipidomics. Among lipidomics technologies, phosphoinositide profiling using electrospray ionization mass spec- trometry (ESI-MS) and phospholipid analysis using matrix-assisted laser desorption/ionization mass Figure 1. A phosphatidylinositol structure. This figure is originated from spectrometry (MALDI-MS) are quite challenging http://en.wikipedia.org/wiki/File:Phosphatidylinositol.jpg. The hydroxyl due to their technical difficulties although they moieties at 3', 4', and 5' in the head group can be phosphorylated to pro- could suggest more information on lipid related duce seven phosphoinositides, phosphatidylinositol 3-phosphate (PI3P), diseases. In these fields, several attempts have phosphatidylinositol 4-phosphate (PI4P), phosphatidylinositol 5-phos- phate (PI5P), phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P2), phos- been reported in order to beat our technical phatidylinositol (3,5)-bisphosphate (PI(3,5)P2), phosphatidylinositol limitation. We are bringing out the technical (4,5)-bisphosphate (PI(4,5)P2), and phosphatidylinositol (3,4,5)-tri- progress of cellular phosphoinositide profiling with sphosphate (PI(3,4,5)P3, PIP3). Analysis of phospholipids by MS 3 and De Camilli, 2006). high resolving power. Phosphoinositides are less abundant lipids in Several methods such as fast atom bombardment eukaryotic cell membranes. Therefore, analysis of mass spectrometry (FAB-MS), matrix-assisted phosphoinositides requires special cautions during laser desorption and ionization/time of flight mass sample treatment. According to several reports spectrometry (MALDI-TOF-MS) and ESI-MS have (Hsu and Turk, 2000; Wenk et al., 2003; Milne et al been used for the analysis of phosphoinositides. 2005; Shui et al., 2007) to minimize the MALDI-TOF-MS has been recently applied for interference of other phospholipids during analysis, phosphatidylinositols in murine brain extracts a selective two-step extraction was used (Scheme (Berry et al., 2004) and ESI-MS has been used for 1). First, the cell material was extracted with PIPs and PIP2s in lipid extracts from cultures
Recommended publications
  • Suramin Alters Phosphoinositide Synthesis and Inhibits Growth Factor Receptor Binding in HT-29 Cells'
    (CANCER RESEARCH 50. 6490-6496. October 15. 1990] Suramin Alters Phosphoinositide Synthesis and Inhibits Growth Factor Receptor Binding in HT-29 Cells' Reinhard Kopp2 and Andreas Pfeiffer Departments of Surgery and Internal Medicine II, Klinikum (irosshadern. University of Munich, West Germany ABSTRACT levels and a stimulation of calcium/calmodulin kinases. Di acylglycerol activates protein kinase C, a family of Ca2+-sensi- Initiation of cell growth frequently involves activation of growth factor tive and phospholipid-dependent isoenzymes, known to phos- receptor-coupled u rosine kinases and stimulation of the phosphoinositide phorylate regulatory proteins and to elevate cytosolic pH levels second messenger system. The antitrypanosomal and antifiliarial drug suramin has been shown to exert antiproliferative activities by inhibition (5, 6). Activation of protein kinase C by phorbol esters and of growth factor receptor binding. We therefore investigated the effect of elevation of intracellular calcium levels by calcium ionophores suramin on epidermal growth factor receptor-binding characteristics and, have been shown to be mitogenically active cofactors during the additionally, searched for effects on basal or cholinergically stimulated initiation of DNA synthesis (7-10). phospholipid metabolism in HT-29 cells. HT-29 colon carcinoma cells have recently been shown to Suramin caused a dose-dependent and noncompetitive inhibition of produce EGF/transforming growth factor «and insulin-like '"I-epidermal growth factor binding (concentration producing 50% inhi growth factor 1-like activities (11), indicating a possible auto bition, 44.2 Mg/ml)but did not alter muscarinic receptor binding. Suramin did not affect the basal '-'I* incorporation into phosphoinositides at crine proliferative effect of these growth factors.
    [Show full text]
  • (4,5) Bisphosphate-Phospholipase C Resynthesis Cycle: Pitps Bridge the ER-PM GAP
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Topological organisation of the phosphatidylinositol (4,5) bisphosphate-phospholipase C resynthesis cycle: PITPs bridge the ER-PM GAP Shamshad Cockcroft and Padinjat Raghu* Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK; *National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India Address correspondence to: Shamshad Cockcroft, University College London UK; Phone: 0044-20-7679-6259; Email: [email protected] Abstract Phospholipase C (PLC) is a receptor-regulated enzyme that hydrolyses phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) triggering three biochemical consequences, the generation of soluble inositol 1,4,5-trisphosphate (IP3), membrane– associated diacylglycerol (DG) and the consumption of plasma membrane PI(4,5)P2. Each of these three signals triggers multiple molecular processes impacting key cellular properties. The activation of PLC also triggers a sequence of biochemical reactions, collectively referred to as the PI(4,5)P2 cycle that culminates in the resynthesis of this lipid. The biochemical intermediates of this cycle and the enzymes that mediate these reactions are topologically distributed across two membrane compartments, the PM and the endoplasmic reticulum (ER). At the plasma membrane, the DG formed during PLC activation is rapidly converted to phosphatidic acid (PA) that needs to be transported to the ER where the machinery for its conversion into PI is localised. Conversely, PI from the ER needs to be rapidly transferred to the plasma membrane where it can be phosphorylated by lipid kinases to regenerate PI(4,5)P2.
    [Show full text]
  • Non-Canonical Regulation of Phosphatidylserine Metabolism by a Phosphatidylinositol Transfer Protein and a Phosphatidylinositol 4-OH Kinase
    bioRxiv preprint doi: https://doi.org/10.1101/696336; this version posted July 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Non-Canonical Regulation of Phosphatidylserine Metabolism by a Phosphatidylinositol Transfer Protein and a Phosphatidylinositol 4-OH Kinase Yaxi Wang1,2, Peihua Yuan2, Ashutosh Tripathi2, Martin Rodriguez1, Max Lönnfors2, Michal Eisenberg-Bord3, Maya Schuldiner3, and Vytas A. Bankaitis1,2,4† 1Department of Biochemistry and Biophysics Texas A&M University College Station, Texas 77843-2128 USA 2Department of Molecular and Cellular Medicine Texas A&M Health Science Center College Station, Texas 77843-1114 USA 3Department of Molecular Genetics Weizmann Institute of Science, Rehovot 7610001, Israel 4Department of Chemistry Texas A&M University College Station, Texas 77840 USA Key Words: phosphoinositides/ PITPs/ lipid kinases/ lipi metabolism/ membrane contact site † -- Corresponding author TEL: 979-436-0757 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/696336; this version posted July 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT The phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in an endoplasmic reticulum (ER)-Golgi/endosome membrane contact site (MCS) that facilitates phosphatidylserine decarboxylation to phosphatidylethanomaine (PtdEtn) in Saccharomyces cerevisiae.
    [Show full text]
  • (4,5)-Bisphosphate Destabilizes the Membrane of Giant Unilamellar Vesicles
    5112 Biophysical Journal Volume 96 June 2009 5112–5121 Profilin Interaction with Phosphatidylinositol (4,5)-Bisphosphate Destabilizes the Membrane of Giant Unilamellar Vesicles Kannan Krishnan,† Oliver Holub,‡ Enrico Gratton,‡ Andrew H. A. Clayton,§ Stephen Cody,§ and Pierre D. J. Moens†* †Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia; ‡Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California; and §Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria, Australia ABSTRACT Profilin, a small cytoskeletal protein, and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] have been implicated in cellular events that alter the cell morphology, such as endocytosis, cell motility, and formation of the cleavage furrow during cytokinesis. Profilin has been shown to interact with PI(4,5)P2, but the role of this interaction is still poorly understood. Using giant unilamellar vesicles (GUVs) as a simple model of the cell membrane, we investigated the interaction between profilin and PI(4,5)P2. A number and brightness analysis demonstrated that in the absence of profilin, molar ratios of PI(4,5)P2 above 4% result in lipid demixing and cluster formations. Furthermore, adding profilin to GUVs made with 1% PI(4,5)P2 leads to the forma- tion of clusters of both profilin and PI(4,5)P2. However, due to the self-quenching of the dipyrrometheneboron difluoride-labeled PI(4,5)P2, we were unable to determine the size of these clusters. Finally, we show that the formation of these clusters results in the destabilization and deformation of the GUV membrane.
    [Show full text]
  • (LC-MS/MS) Method for the Determination of NDMA in Ranitidine Drug Substance and Solid Dosage Drug Product
    10/17/2019 Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Method for the Determination of NDMA in Ranitidine Drug Substance and Solid Dosage Drug Product Background: Ranitidine is a prescription and over-the-counter drug used to treat acid reflux. The drug is a histamine-2 receptor antagonist (acid inhibitor or H2 blocker). Some of the common H2 receptor blockers include: Ranitidine (Zantac), Nizatidine (Axid), Famotidine (Pepcid, Pepcid AC) and Cimetidine (Tagamet, Tagamet HB). Ranitidine medicine was suspected of being contaminated with N-nitroso-di-methylamine (NDMA), a probable human carcinogen, following notification in June 2019. Accordingly, a liquid chromatography-high resolution mass spectrometry (LC-HRMS) method was developed and validated by the Agency to determine the level of NDMA in ranitidine drug products and drug substances. This method is a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of NDMA in ranitidine drug substance and drug product. This LC-MS method based on a QQQ platform may be used as an alternative or confirmatory method for the liquid chromatography high resolution mass spectrometry (LC-HRMS) method detailed in FY19-177- DPA-S. The QQQ platform is more widely available than the LC-HRMS platform previously shared by the agency. Conclusions: An LC-MS/MS method was developed and validated following ICH Q2 (R1) for the detection and quantitation of NDMA in Ranitidine drug substance and drug product. The limit of detection (LOD), limit of quantitation (LOQ) and range of the method are summarized below: NDMA LOD (ng/mL) 0.3 (ppm) 0.01 LOQ (ng/mL) 1.0 (ppm) 0.033 Range (ng/mL) 1.0 - 100 (ppm) 0.033 – 3.33 Page 1 of 7 10/17/2019 LC-MS/MS Method for the Determination of NDMA impurity in Ranitidine Drug Substance or Solid Dosage Drug Product Purpose This method is used to quantitate N-nitroso-di-methylamine (NDMA) impurity in ranitidine drug substance or solid dosage drug product.
    [Show full text]
  • Laser-Induced Dissociation of Phosphorylated Peptides Using
    09_Cotter 10/19/07 7:57 AM Page 133 Clinical Proteomics Copyright © 2006 Humana Press Inc. All rights of any nature whatsoever are reserved. ISSN 1542-6416/06/02:133–144/$30.00 (Online) Original Article Laser-Induced Dissociation of Phosphorylated Peptides Using Matrix Assisted Laser Desorption/Ionization Tandem Time-of-Flight Mass Spectrometry Dongxia Wang,1 Philip A. Cole,2 and Robert J. Cotter2,* 1Biotechnology Core Facility, National Center for Infectious Disease, Center for Disease Control and Prevention, Atlanta, GA; 2Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD site or concensus sequence is present in a given Abstract tryptic peptide. Here, we investigated the frag- Reversible phosphorylation is one of the mentation of phosphorylated peptides under most important posttranslational modifications laser-induced dissociation (LID) using a of cellular proteins. Mass spectrometry is a MALDI-time-of-flight mass spectrometer with a widely used technique in the characterization of curved-field reflectron. Our data demonstrated phosphorylated proteins and peptides. Similar that intact fragments bearing phosphorylated to nonmodified peptides, sequence information residues were produced from all tested peptides for phosphopeptides digested from proteins can that contain at least one and up to four be obtained by tandem mass analysis using phosphorylation sites at serine, threonine, or either electrospray ionization or matrix assisted tyrosine residues. In addition, the LID of laser desorption/ionization (MALDI) mass phosphopeptides derivatized by N-terminal spectrometry. However, the facile loss of neutral sulfonation yields simplified MS/MS spectra, phosphoric acid (H3PO4) or HPO3 from precur- suggesting the combination of these two types sor ions and fragment ions hampers the precise of spectra could provide an effective approach determination of phosphorylation site, particu- to the characterization of proteins modified by larly if more than one potential phosphorylation phosphorylation.
    [Show full text]
  • Inositol Triphosphate-Triggered Calcium Release Blocks Lipid Exchange at Endoplasmic Reticulum- Golgi Contact Sites
    ARTICLE https://doi.org/10.1038/s41467-021-22882-x OPEN Inositol triphosphate-triggered calcium release blocks lipid exchange at endoplasmic reticulum- Golgi contact sites Mouhannad Malek 1, Anna M. Wawrzyniak 1, Peter Koch1, Christian Lüchtenborg2, Manuel Hessenberger1, ✉ Timo Sachsenheimer2, Wonyul Jang 1, Britta Brügger 2 & Volker Haucke 1,3 fi 1234567890():,; Vesicular traf c and membrane contact sites between organelles enable the exchange of proteins, lipids, and metabolites. Recruitment of tethers to contact sites between the endo- plasmic reticulum (ER) and the plasma membrane is often triggered by calcium. Here we reveal a function for calcium in the repression of cholesterol export at membrane contact sites between the ER and the Golgi complex. We show that calcium efflux from ER stores induced by inositol-triphosphate [IP3] accumulation upon loss of the inositol 5-phosphatase INPP5A or receptor signaling triggers depletion of cholesterol and associated Gb3 from the cell surface, resulting in a blockade of clathrin-independent endocytosis (CIE) of Shiga toxin. This phenotype is caused by the calcium-induced dissociation of oxysterol binding protein (OSBP) from the Golgi complex and from VAP-containing membrane contact sites. Our findings reveal a crucial function for INPP5A-mediated IP3 hydrolysis in the control of lipid exchange at membrane contact sites. 1 Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany. 2 Heidelberg University Biochemistry Center (BZH), Heidelberg ✉ University, Heidelberg, Germany. 3 Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:2673 | https://doi.org/10.1038/s41467-021-22882-x | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22882-x ellular membrane homeostasis and the exchange of Results material between compartments can occur by vesicular INPP5A is required for Gb3-mediated Shiga toxin cell entry.
    [Show full text]
  • Regulation of Signaling and Metabolism by Lipin-Mediated Phosphatidic Acid Phosphohydrolase Activity
    biomolecules Review Regulation of Signaling and Metabolism by Lipin-mediated Phosphatidic Acid Phosphohydrolase Activity Andrew J. Lutkewitte and Brian N. Finck * Center for Human Nutrition, Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Euclid Avenue, Campus Box 8031, St. Louis, MO 63110, USA; [email protected] * Correspondence: bfi[email protected]; Tel: +1-3143628963 Received: 4 September 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Phosphatidic acid (PA) is a glycerophospholipid intermediate in the triglyceride synthesis pathway that has incredibly important structural functions as a component of cell membranes and dynamic effects on intracellular and intercellular signaling pathways. Although there are many pathways to synthesize and degrade PA, a family of PA phosphohydrolases (lipin family proteins) that generate diacylglycerol constitute the primary pathway for PA incorporation into triglycerides. Previously, it was believed that the pool of PA used to synthesize triglyceride was distinct, compartmentalized, and did not widely intersect with signaling pathways. However, we now know that modulating the activity of lipin 1 has profound effects on signaling in a variety of cell types. Indeed, in most tissues except adipose tissue, lipin-mediated PA phosphohydrolase activity is far from limiting for normal rates of triglyceride synthesis, but rather impacts critical signaling cascades that control cellular homeostasis. In this review, we will discuss how lipin-mediated control of PA concentrations regulates metabolism and signaling in mammalian organisms. Keywords: phosphatidic acid; diacylglycerol; lipin; signaling 1. Introduction Foundational work many decades ago by the laboratory of Dr. Eugene Kennedy defined the four sequential enzymatic steps by which three fatty acyl groups were esterified onto the glycerol-3-phosphate backbone to synthesize triglyceride [1].
    [Show full text]
  • An Organic Chemist's Guide to Electrospray Mass Spectrometric
    molecules Review An Organic Chemist’s Guide to Electrospray Mass Spectrometric Structure Elucidation Arnold Steckel 1 and Gitta Schlosser 2,* 1 Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary; [email protected] 2 Department of Analytical Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary * Correspondence: [email protected] Received: 16 January 2019; Accepted: 8 February 2019; Published: 10 February 2019 Abstract: Tandem mass spectrometry is an important tool for structure elucidation of natural and synthetic organic products. Fragmentation of odd electron ions (OE+) generated by electron ionization (EI) was extensively studied in the last few decades, however there are only a few systematic reviews available concerning the fragmentation of even-electron ions (EE+/EE−) produced by the currently most common ionization techniques, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). This review summarizes the most important features of tandem mass spectra generated by collision-induced dissociation fragmentation and presents didactic examples for the unexperienced users. Keywords: tandem mass spectrometry; MS/MS fragmentation; collision-induced dissociation; CID; ESI; structure elucidation 1. Introduction Electron ionization (EI), a hard ionization technique, is the method of choice for analyses of small (<1000 Da), nonpolar, volatile compounds. As its name implies, the technique involves ionization by electrons with ~70 eV energy. This energy is high enough to yield very reproducible mass spectra with a large number of fragments. However, these spectra frequently lack the radical type molecular ions (M+) due to the high internal energy transferred to the precursors [1].
    [Show full text]
  • Phosphatidylglycerol Incorporates Into Cardiolipin to Improve
    www.nature.com/scientificreports OPEN Phosphatidylglycerol Incorporates into Cardiolipin to Improve Mitochondrial Activity and Inhibits Received: 3 July 2017 Accepted: 7 March 2018 Infammation Published: xx xx xxxx Wei-Wei Chen1, Yu-Jen Chao1, Wan-Hsin Chang1, Jui-Fen Chan1 & Yuan-Hao Howard Hsu1,2 Chronic infammation and concomitant oxidative stress can induce mitochondrial dysfunction due to cardiolipin (CL) abnormalities in the mitochondrial inner membrane. To examine the responses of mitochondria to infammation, macrophage-like RAW264.7 cells were activated by Kdo2-Lipid A (KLA) in our infammation model, and then the mitochondrial CL profle, mitochondrial activity, and the mRNA expression of CL metabolism-related genes were examined. The results demonstrated that KLA activation caused CL desaturation and the partial loss of mitochondrial activity. KLA activation also induced the gene upregulation of cyclooxygenase (COX)-2 and phospholipid scramblase 3, and the gene downregulation of COX-1, lipoxygenase 5, and Δ-6 desaturase. We further examined the phophatidylglycerol (PG) inhibition efects on infammation. PG supplementation resulted in a 358- fold inhibition of COX-2 mRNA expression. PG(18:1)2 and PG(18:2)2 were incorporated into CLs to considerably alter the CL profle. The decreased CL and increased monolysocardiolipin (MLCL) quantity resulted in a reduced CL/MLCL ratio. KLA-activated macrophages responded diferentially to PG(18:1)2 and PG(18:2)2 supplementation. Specifcally, PG(18:1)2 induced less changes in the CL/MLCL ratio than did PG(18:2)2, which resulted in a 50% reduction in the CL/MLCL ratio. However, both PG types rescued 20–30% of the mitochondrial activity that had been afected by KLA activation.
    [Show full text]
  • Lipid–Protein and Protein–Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis
    International Journal of Molecular Sciences Review Lipid–Protein and Protein–Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis Olga Cañadas 1,2,Bárbara Olmeda 1,2, Alejandro Alonso 1,2 and Jesús Pérez-Gil 1,2,* 1 Departament of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; [email protected] (O.C.); [email protected] (B.O.); [email protected] (A.A.) 2 Research Institut “Hospital Doce de Octubre (imasdoce)”, 28040 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-913944994 Received: 9 May 2020; Accepted: 22 May 2020; Published: 25 May 2020 Abstract: Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface. Keywords: pulmonary surfactant film; surfactant metabolism; surface tension; respiratory air–liquid interface; inflammation; antimicrobial activity; apoptosis; efferocytosis; tissue repair 1.
    [Show full text]
  • Studies of the Structure of Potassium Channel Kcsa in the Open Conformation and the Effect of Anionic Lipids on Channel Inactivation
    Studies of the structure of potassium channel KcsA in the open conformation and the effect of anionic lipids on channel inactivation Dongyu (Allison) Zhang Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Dongyu Zhang All rights reserved Abstract Studies of the structure of potassium channel KcsA in the open conformation and the effect of anionic lipids on channel inactivation Dongyu Zhang Membrane proteins play a vital role in cellular processes. In this thesis, we use KcsA, a prokaryotic potassium channel, as a model to investigate the gating mechanism of ion channels and the effect of anionic lipids on the channel activity using solid-state NMR spectroscopy. KcsA activity is known to be highly dependent on the presence of negatively charged lipids. Multiple crystal structures combined with biochemistry assays suggest that KcsA is co-purified with anionic lipids with phosphatidylglycerol headgroup. Here, we identified this specifically bound, isotopically labeled lipid in the protein 13C-13C correlation spectra. Our results reveal that the lipid cross peaks show stronger intensity when the channel is in the inactivated state compared to the activated state, which indicates a stronger protein-lipid interaction when KcsA is inactivated. In addition, our data shows that including anionic lipids into proteoliposomes leads to a weaker potassium ion affinity at the selectivity filter. Considering ion loss as a model of inactivation, our results suggest anionic lipids promote channel inactivation. However, the surface charge is not the only physical parameter that regulates channel gating or conformational preference.
    [Show full text]