A Gentle Introduction to Formal Verification of Computer Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abstract Interpretation
Colloquium d’informatique de l’UPMC Sorbonne Universités Abstract Interpretation 29 septembre 2016, 18:00, Amphi 15 4 Place Jussieu, 75005 Paris Patrick Cousot [email protected]@yu.e1du cs.nyu.edu/~pcousot Abstract interpretation, Colloquium d’informatique de l’UPMC Sorbonne Universités, 29 Septembre 2016 1 © P. Cousot This is an abstract interpretation Abstract interpretation, Colloquium d’informatique de l’UPMC Sorbonne Universités, 29 Septembre 2016 2 © P. Cousot Scientific research Abstract interpretation, Colloquium d’informatique de l’UPMC Sorbonne Universités, 29 Septembre 2016 3 © P. Cousot Scientific research • In Mathematics/Physics: trend towards unification and synthesis through universal principles • In Computer science: trend towards dispersion and parcellation through a ever-growing collection of local ad-hoc techniques for specific applications An exponential process, will stop! Abstract interpretation, Colloquium d’informatique de l’UPMC Sorbonne Universités, 29 Septembre 2016 4 © P. Cousot Example: reasoning on computational structures WCET Operational Security protocole Systems biology Axiomatic verification semantics semantics analysis Abstraction Dataflow Model Database refinement Confidentiality checking analysis analysis query Type Partial Obfuscation Dependence Program evaluation inference synthesis Denotational analysis Separation Effect logic Grammar systems semantics CEGAR analysis Theories Program Termination Statistical Trace combination transformation proof semantics model-checking Interpolants Abstract Shape Code analysis -
Experiments in Validating Formal Semantics for C
Experiments in validating formal semantics for C Sandrine Blazy ENSIIE and INRIA Rocquencourt [email protected] Abstract. This paper reports on the design of adequate on-machine formal semantics for a certified C compiler. This compiler is an optimiz- ing compiler, that targets critical embedded software. It is written and formally verified using the Coq proof assistant. The main structure of the compiler is very strongly conditioned by the choice of the languages of the compiler, and also by the kind of semantics of these languages. 1 Introduction C is still widely used in industry, especially for developing embedded software. The main reason is the control by the C programmer of all the resources that are required for program execution (e.g. memory layout, memory allocation) and that affect performance. C programs can therefore be very efficient, but the price to pay is a programming effort. For instance, using C pointer arithmetic may be required in order to compute the address of a memory cell. However, a consequence of this freedom given to the C programmer is the presence of run-time errors such as buffer overflows and dangling pointers. Such errors may be difficult to detect in programs, because of C type casts and more generally because the C type system is unsafe. Many static analysis tools attempt to detect such errors in order to ensure safety properties that may be ensured by more recent languages such as Java. For instance, CCured is a program transformation system that adds memory safety guarantees to C programs by verifying statically that memory errors cannot oc- cur and by inserting run-time checks where static verification is insufficient [1]. -
Precise and Scalable Static Program Analysis of NASA Flight Software
Precise and Scalable Static Program Analysis of NASA Flight Software G. Brat and A. Venet Kestrel Technology NASA Ames Research Center, MS 26912 Moffett Field, CA 94035-1000 650-604-1 105 650-604-0775 brat @email.arc.nasa.gov [email protected] Abstract-Recent NASA mission failures (e.g., Mars Polar Unfortunately, traditional verification methods (such as Lander and Mars Orbiter) illustrate the importance of having testing) cannot guarantee the absence of errors in software an efficient verification and validation process for such systems. Therefore, it is important to build verification tools systems. One software error, as simple as it may be, can that exhaustively check for as many classes of errors as cause the loss of an expensive mission, or lead to budget possible. Static program analysis is a verification technique overruns and crunched schedules. Unfortunately, traditional that identifies faults, or certifies the absence of faults, in verification methods cannot guarantee the absence of errors software without having to execute the program. Using the in software systems. Therefore, we have developed the CGS formal semantic of the programming language (C in our static program analysis tool, which can exhaustively analyze case), this technique analyses the source code of a program large C programs. CGS analyzes the source code and looking for faults of a certain type. We have developed a identifies statements in which arrays are accessed out Of static program analysis tool, called C Global Surveyor bounds, or, pointers are used outside the memory region (CGS), which can analyze large C programs for embedded they should address. -
Introduction to Model Checking and Temporal Logic¹
Formal Verification Lecture 1: Introduction to Model Checking and Temporal Logic¹ Jacques Fleuriot [email protected] ¹Acknowledgement: Adapted from original material by Paul Jackson, including some additions by Bob Atkey. I Describe formally a specification that we desire the model to satisfy I Check the model satisfies the specification I theorem proving (usually interactive but not necessarily) I Model checking Formal Verification (in a nutshell) I Create a formal model of some system of interest I Hardware I Communication protocol I Software, esp. concurrent software I Check the model satisfies the specification I theorem proving (usually interactive but not necessarily) I Model checking Formal Verification (in a nutshell) I Create a formal model of some system of interest I Hardware I Communication protocol I Software, esp. concurrent software I Describe formally a specification that we desire the model to satisfy Formal Verification (in a nutshell) I Create a formal model of some system of interest I Hardware I Communication protocol I Software, esp. concurrent software I Describe formally a specification that we desire the model to satisfy I Check the model satisfies the specification I theorem proving (usually interactive but not necessarily) I Model checking Introduction to Model Checking I Specifications as Formulas, Programs as Models I Programs are abstracted as Finite State Machines I Formulas are in Temporal Logic 1. For a fixed ϕ, is M j= ϕ true for all M? I Validity of ϕ I This can be done via proof in a theorem prover e.g. Isabelle. 2. For a fixed ϕ, is M j= ϕ true for some M? I Satisfiability 3. -
PROGRAM VERIFICATION Robert S. Boyer and J
PROGRAM VERIFICATION Robert S. Boyer and J Strother Moore To Appear in the Journal of Automated Reasoning The research reported here was supported by National Science Foundation Grant MCS-8202943 and Office of Naval Research Contract N00014-81-K-0634. Institute for Computing Science and Computer Applications The University of Texas at Austin Austin, Texas 78712 1 Computer programs may be regarded as formal mathematical objects whose properties are subject to mathematical proof. Program verification is the use of formal, mathematical techniques to debug software and software specifications. 1. Code Verification How are the properties of computer programs proved? We discuss three approaches in this article: inductive invariants, functional semantics, and explicit semantics. Because the first approach has received by far the most attention, it has produced the most impressive results to date. However, the field is now moving away from the inductive invariant approach. 1.1. Inductive Assertions The so-called Floyd-Hoare inductive assertion method of program verification [25, 33] has its roots in the classic Goldstine and von Neumann reports [53] and handles the usual kind of programming language, of which FORTRAN is perhaps the best example. In this style of verification, the specifier "annotates" certain points in the program with mathematical assertions that are supposed to describe relations that hold between the program variables and the initial input values each time "control" reaches the annotated point. Among these assertions are some that characterize acceptable input and the desired output. By exploring all possible paths from one assertion to the next and analyzing the effects of intervening program statements it is possible to reduce the correctness of the program to the problem of proving certain derived formulas called verification conditions. -
Formal Verification, Model Checking
Introduction Modeling Specification Algorithms Conclusions Formal Verification, Model Checking Radek Pel´anek Introduction Modeling Specification Algorithms Conclusions Motivation Formal Methods: Motivation examples of what can go wrong { first lecture non-intuitiveness of concurrency (particularly with shared resources) mutual exclusion adding puzzle Introduction Modeling Specification Algorithms Conclusions Motivation Formal Methods Formal Methods `Formal Methods' refers to mathematically rigorous techniques and tools for specification design verification of software and hardware systems. Introduction Modeling Specification Algorithms Conclusions Motivation Formal Verification Formal Verification Formal verification is the act of proving or disproving the correctness of a system with respect to a certain formal specification or property. Introduction Modeling Specification Algorithms Conclusions Motivation Formal Verification vs Testing formal verification testing finding bugs medium good proving correctness good - cost high small Introduction Modeling Specification Algorithms Conclusions Motivation Types of Bugs likely rare harmless testing not important catastrophic testing, FVFV Introduction Modeling Specification Algorithms Conclusions Motivation Formal Verification Techniques manual human tries to produce a proof of correctness semi-automatic theorem proving automatic algorithm takes a model (program) and a property; decides whether the model satisfies the property We focus on automatic techniques. Introduction Modeling Specification Algorithms Conclusions -
Lecture Notes in Computer Science 1145 Edited by G
Lecture Notes in Computer Science 1145 Edited by G. Goos, J. Hartmanis and J. van Leeuwen Advisory Board: W. Brauer D. Gries J. Stoer Radhia Cousot David A. Schmidt (Eds.) Static Analysis Third International Symposium, SAS '96 Aachen, Germany, September 24-26, 1996 Proceedings ~ Springer Series Editors Gerhard Goos, Karlsruhe University, Germany Juris Hartmanis, Cornell University, NY, USA Jan van Leeuwen, Utrecht University, The Netherlands Volume Editors Radhia Cousot l~cole Polytechnique, Laboratoire d'Inforrnatique F-91128 Palaiseau Cedex, France E-mail: radhia.cousot @lix.polytechnique.fr David A. Schmidt Kansas State University, Department of Computing and Information Sciences Manhattan, KS 66506, USA E-maih [email protected] Cataloging-in-Publication data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Static analysis : third international symposium ; proceedings / SAS '96, Aachen, Germany, September 24 - 26, 1996. Radhia Cousot ; David A. Schmidt (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ; Singapore ; Tokyo : Springer, 1996 (Lecture notes in computer science ; Vol. 1145) ISBN 3-540-61739-6 NE: Cousot, Radhia [Hrsg.]; SAS <3, 1996, Aachen>; GT CR Subject Classification (1991): D.1, D.2.8, D.3.2-3,F.3.1-2, F.4.2 ISSN 0302-9743 ISBN 3-540-61739-6 Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer -Verlag. -
Formal Verification of Diagnosability Via Symbolic Model Checking
Formal Verification of Diagnosability via Symbolic Model Checking Alessandro Cimatti Charles Pecheur Roberto Cavada ITC-irst RIACS/NASA Ames Research Center ITC-irst Povo, Trento, Italy Moffett Field, CA, U.S.A. Povo, Trento, Italy mailto:[email protected] [email protected] [email protected] Abstract observed system. We propose a new, practical approach to the verification of diagnosability, making the following contribu• This paper addresses the formal verification of di• tions. First, we provide a formal characterization of diagnos• agnosis systems. We tackle the problem of diagnos• ability problem, using the idea of context, that explicitly takes ability: given a partially observable dynamic sys• into account the run-time conditions under which it should be tem, and a diagnosis system observing its evolution possible to acquire certain information. over time, we discuss how to verify (at design time) Second, we show that a diagnosability condition for a given if the diagnosis system will be able to infer (at run• plant is violated if and only if a critical pair can be found. A time) the required information on the hidden part of critical pair is a pair of executions that are indistinguishable the dynamic state. We tackle the problem by look• (i.e. share the same inputs and outputs), but hide conditions ing for pairs of scenarios that are observationally that should be distinguished (for instance, to prevent simple indistinguishable, but lead to situations that are re• failures to stay undetected and degenerate into catastrophic quired to be distinguished. We reduce the problem events). We define the coupled twin model of the plant, and to a model checking problem. -
Theorem Proving for Verification
Theorem Proving for Verification John Harrison Intel Corporation CAV 2008 Princeton 9th July 2008 0 Formal verification Formal verification: mathematically prove the correctness of a design with respect to a mathematical formal specification. Actual requirements 6 Formal specification 6 Design model 6 Actual system 1 Essentials of formal verification The basic steps in formal verification: Formally model the system • Formalize the specification • Prove that the model satisfies the spec • But what formalism should be used? 2 Some typical formalisms Propositional logic, a.k.a. Boolean algebra • Temporal logic (CTL, LTL etc.) • Quantifier-free combinations of first-order arithmetic theories • Full first-order logic • Higher-order logic or first-order logic with arithmetic or set theory • 3 Expressiveness vs. automation There is usually a roughly inverse relationship: The more expressive the formalism, the less the ‘proof’ is amenable to automation. For the simplest formalisms, the proof can be so highly automated that we may not even think of it as ‘theorem proving’ at all. The most expressive formalisms have a decision problem that is not decidable, or even semidecidable. 4 Logical syntax English Formal false ⊥ true ⊤ not p p ¬ p and q p q ∧ p or q p q ∨ p implies q p q ⇒ p iff q p q ⇔ for all x, p x. p ∀ there exists x such that p x. p ∃ 5 Propositional logic Formulas built up from atomic propositions (Boolean variables) and constants , using the propositional connectives , , , and ⊥ ⊤ ¬ ∧ ∨ ⇒ . ⇔ No quantifiers or internal structure to the atomic propositions. 6 Propositional logic Formulas built up from atomic propositions (Boolean variables) and constants , using the propositional connectives , , , and ⊥ ⊤ ¬ ∧ ∨ ⇒ . -
Safety Standards and WCET Analysis Tools Daniel Kästner, Christian Ferdinand
Safety Standards and WCET Analysis Tools Daniel Kästner, Christian Ferdinand To cite this version: Daniel Kästner, Christian Ferdinand. Safety Standards and WCET Analysis Tools. Embedded Real Time Software and Systems (ERTS2012), Feb 2012, Toulouse, France. hal-02192406 HAL Id: hal-02192406 https://hal.archives-ouvertes.fr/hal-02192406 Submitted on 23 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Safety Standards and WCET Analysis Tools Daniel Kastner¨ Christian Ferdinand AbsInt GmbH, Science Park 1, D-66123 Saarbrucken,¨ Germany http://www.absint.com Abstract of-the-art techniques for verifying software safety re- quirements have to be applied to make sure that an appli- In automotive, railway, avionics, automation, and cation is working properly. To do so lies in the responsi- healthcare industries more and more functionality is im- bility of the system designers. Ensuring software safety plemented by embedded software. A failure of safety- is one of the goals of safety standards like DO-178B, critical software may cause high costs or even endan- DO-178C, IEC-61508, ISO-26262, or EN-50128. They ger human beings. Also for applications which are not all require to identify functional and non-functional haz- highly safety-critical, a software failure may necessitate ards and to demonstrate that the software does not vio- expensive updates. -
On Abstraction in Software Verification ‹
On Abstraction in Software Verification ‹ Patrick Cousot1 and Radhia Cousot2 1 École normale supérieure, Département d'informatique, 45 rue d'Ulm, 75230 Paris cedex 05, France [email protected] www.di.ens.fr/~cousot/ 2 CNRS & École polytechnique, Laboratoire d'informatique, 91128 Palaiseau cedex, France [email protected] lix.polytechnique.fr/~rcousot Abstract. We show that the precision of static abstract software check- ing algorithms can be enhanced by taking explicitly into account the ab- stractions that are involved in the design of the program model/abstract semantics. This is illustrated on reachability analysis and abstract test- ing. 1 Introduction Most formal methods for reasoning about programs (such as deductive meth- ods, software model checking, dataflow analysis) do not reason directly on the trace-based operational program semantics but on an approximate model of this semantics. The abstraction involved in building the model of the program seman- tics is usually left implicit and not discussed. The importance of this abstraction appears when it is made explicit for example in order to discuss the soundness and (in)completeness of temporal-logic based verification methods [1, 2]. The purpose of this paper is to discuss the practical importance of this ab- straction when designing static software checking algorithms. This is illustrated on reachability analysis and abstract testing. 2 Transition Systems We follow [3, 4] in formalizing a hardware or software computer system by a transition system xS; t; I; F; Ey with set of states S, transition relation t Ď pS ˆ Sq, initial states I Ď S, erroneous states E Ď S, and final states F Ď S. -
QWIRE Practice: Formal Verification of Quantum Circuits In
WIRE Practice: Formal Verification of Quantum Circuits in Coq Q Robert Rand Jennifer Paykin Steve Zdancewic [email protected] [email protected] [email protected] University of Pennsylvania We describe an embedding of the QWIRE quantum circuit language in the Coq proof assistant. This allows programmers to write quantum circuits using high-level abstractions and to prove properties of those circuits using Coq’s theorem proving features. The implementation uses higher-order abstract syntax to represent variable binding and provides a type-checking algorithm for linear wire types, ensuring that quantum circuits are well-formed. We formalize a denotational semantics that interprets QWIRE circuits as superoperators on density matrices, and prove the correctness of some simple quantum programs. 1 Introduction The last few years have witnessed the emergence of lightweight, scalable, and expressive quantum cir- cuit languages such as Quipper [10] and LIQUiS⟩ [22]. These languages adopt the QRAM model of quantum computation, in which a classical computer sends instructions to a quantum computer and re- ceives back measurement results. Quipper and LIQUiS⟩ programs classically produce circuits that can be executed on a quantum computer, simulated on a classical computer, or compiled using classical tech- niques to smaller, faster circuits. Since both languages are embedded inside general-purpose classical host languages (Haskell and F#), they can be used to build useful abstractions on top of quantum circuits, allowing for general purpose quantum programming. As is the case with classical programs, however, quantum programs in these languages will invariably have bugs. Since quantum circuits are inherently expensive to run (either simulated or on a real quantum computer) and are difficult or impossible to debug at runtime, numerous techniques have been developed to verify properties of quantum programs.