An Overviewof Ocean Renewable Energy Technologies

Total Page:16

File Type:pdf, Size:1020Kb

An Overviewof Ocean Renewable Energy Technologies or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any articlepermitted only photocopy by is of machine, reposting, this means or collective or other redistirbution This article has This been published in MARINE RENEWABLE EnERGY | TECHNOLOGY DEVELOPMEnt And DEPLOYMEnt BY ROGER BEDARD, PAUL T. JACOBSON, MIRKO PREVISIC, WALTER MUSIAL, And ROBERT VARLEY Oceanography , Volume 23, Number 2, a quarterly journal of The 23, Number 2, a quarterly , Volume An Overview of Ocean Renewable O Energy Technologies ceanography S ociety. ociety. © 2010 by The 2010 by ABSTRACT. Ocean energy is a term used to describe renewable energy derived from and tidal/open-ocean current energy the sea, including ocean wave energy, tidal and open-ocean current energy (sometimes resources. A small number of large O called marine hydrokinetic energy), tidal barrages, offshore wind energy, and ocean companies are leading the commercial- ceanography thermal and salinity gradient energy. Shallow water offshore wind is a commercial ization of offshore wind energy, ocean O ceanography ceanography technology (over 1,500 MW capacity installed in Europe). The technologies to convert thermal gradient, and salinity gradient S ociety. ociety. the other ocean energy resources to electricity, including deepwater offshore wind energy technologies. A technology, albeit in their infancies, exist. These technologies are ready for full- ll rights reserved. S ociety. ociety. scale prototype and early commercialization testing at sea. This paper highlights the OCEAN WAVE EnERGY S technology development status of various energy conversion technologies. COnvERSION TECHNOLOGIES or Th e [email protected] to: correspondence all end P Ocean waves are generated by the influ- article for use research. and this copy in teaching to granted is ermission IntRODUCTION tidal barrage plants: a 240 MW plant ence of the wind on the ocean surface, In the 1970s, the United Kingdom at LaRance, France; a 20 MW plant at which first causes ripples. As the wind had the most aggressive wave energy Annapolis, Nova Scotia, Canada; and continues to blow, the ripples become program in the world. Although the smaller plants in China and Russia. Tidal chop, then fully developed seas, and program contributed to important in-stream technology development has finally swells. In deep water, the energy research such as optimal control and been funded in Europe since the 1990s, in waves can travel for thousands of O tuning of wave power conversion and DOE started its wave, tidal, and miles before it is finally dissipated ceanography devices, it ultimately stalled as oil prices open-ocean current program in 2008. on distant shores. dropped and government funding Salinity gradient technology has received Many devices have been proposed to S ociety, ociety, stopped. The US Department of Energy attention in Europe, particularly in achieve the conversion of wave energy PO (DOE) funded an open-ocean current Norway and the Netherlands. into electricity. Various hydraulic or B ox 1931, ox R program in the 1970s, an ocean thermal Today, a large number of small pneumatic power conversion systems are reproduction, systemmatic epublication, R energy conversion (OTEC) program companies backed by government used, and in some cases, the mechanical ockville, MD 20849-1931, in the 1980s, and a wind program organizations, private industry, utili- motion induced by the wave energy is extending from the late 1970s to the ties, and venture capital are leading the converted directly to electrical power present, which includes a small offshore commercialization of technologies to (direct-drive). These devices can be wind component. There are a few generate electricity from ocean wave bottom-mounted or floating and vary USA . 22 Oceanography Vol.23, No.2 a b c d Figure 1. (a) PowerBuoy (courtesy of Ocean Power Technologies), (b) WaveDragon (courtesy of WaveDragon), (c) Pelamis (courtesy of Pelamis Wave Power), and (d) oscillating water column terminator (courtesy of OceanLinx). in size, orientation, and distance from Overtopping Terminator sea surface then turns conventional low- shore. Four of the best-known offshore A terminator reflects or absorbs all of head hydro turbines that are coupled to technology concepts are introduced the wave energy—hence it “terminates” generators to produce electricity. below and depicted in Figure 1. the waves. One type of terminator is an overtopping device that uses a Linear Absorber or Attenuator Point Absorber floating reservoir structure, typically A linear absorber, sometimes called Devices that are small compared to a with reflecting arms to focus the wave an attenuator, is a device that is large typical wavelength (waves of interest energy (Figure 1b). As waves arrive, they compared to a typical wave’s length. The for energy production vary from 40 overtop the ramp and are restrained in linear absorber structure is oriented to over 300 m in length) are termed the reservoir. The potential energy due roughly parallel to the direction of wave “point absorbers.” Point absorbers are to the height of collected water above the propagation and is composed of multiple bottom-mounted or floating structures that absorb energy from all directions. Roger Bedard ([email protected]) is Private Consultant, Palo Alto, CA, USA. The power conversion system may take Paul T. Jacobson is Senior Program Manager, Marine and Hydrokinetic Energy Research, a number of forms depending on the Electric Power Research Institute, Palo Alto, CA, USA. Mirko Previsic is President, Re Vision selected configuration. Figure 1a shows a Consulting LLC, Sacramento, CA, USA. Walter Musial is Principal Engineer, National Wind floating buoy; however, a point absorber Technology Center, National Renewable Energy Laboratory, US Department of Energy, could as well be a bottom-standing Boulder, CO, USA. Robert Varley is Program Manager, Lockheed Martin Company, device with an upper floater element. Manassas, VA, USA. Oceanography June 2010 23 sections that rotate in pitch and yaw rela- system built into the coastline of the pressure water to an onshore turbine that tive to each other. That motion is used Island of Islay in Scotland in 2000 by generates electricity. to pressurize a hydraulic fluid, which WaveGen (now part of Voith Hydro); In the area of testing and test facili- then turns a turbine that is coupled the second unit is located on Pico Island, ties, the US marine energy industry is to a generator to produce electricity. Azores, Portugal. In 2003, WaveDragon currently challenged by the lack of Figure 1c depicts a slackly moored, was the first offshore, grid-connected proper and standardized infrastruc- floating, hinged-contour linear absorber. wave power unit and was deployed in ture to deploy and test wave energy The four sections move relative to each a protected bay in Denmark due to its conversion devices in the open ocean. other, and this motion is converted subscale nature. However, progress is being made toward into electricity at each hinge point by a In 2004, Pelamis, the first full- the development of such facilities. The hydraulic power converter system. scale, grid-connected wave power Northwest National Marine Renewable unit deployed at sea, was installed at Energy Center (NNMREC), led by OSU, Oscillating Water Column the European Marine Energy Center will provide wave energy developers Terminator (EMEC), a wave test facility, in the UK. with test berths to perform field tests and An oscillating water column (OWC) Based on the successful EMEC testing, demonstrations of subscale and full-scale terminator is a conversion device that the first commercial sale of an offshore devices. Pacific Gas and Electric (PG&E) harnesses the motion of the ocean wave power plant was announced in will provide an undersea electrical waves as they push an air pocket up or May 2005 and the first 2.25-MW stage of grid connection called “WaveConnect” pull it down. This device is a partially that plant was deployed off the coast of several miles offshore of California and submerged chamber with air trapped Portugal in 2008.1 will connect wave energy converters above a column of water (Figure 1d). As In the United States, Ocean Power from multiple vendors to the PG&E waves enter and exit the chamber, the Technologies (OPT) was the first to electrical grid (similar to the UK Wave water column moves up and down and deploy kilowatt-scale wave energy Hub funded by the UK government) and acts like a piston on the air, compressing converters off the coasts of Hawai’i and provide for testing and evaluation of the and decompressing it to generate a New Jersey in 2005. Columbia Power devices for commercial deployment. reversing stream of high-velocity air in Technologies (CPT) and Oregon State Additional demonstration projects are an exit blow hole. This air is channeled University (OSU) were the first to deploy ongoing and planned in the UK, Ireland, through a turbine/generator to produce kilowatt-scale wave energy converters Spain, Portugal, China, Japan, Australia, electricity. An OWC is also a type of off the west coast of the United States Canada, and the United States. If these wave terminator. in 2007 and 2008. OPT plans to deploy early demonstration schemes prove a 150-kW point absorber off the coast successful, medium-size wave farms with StATUS OF OCEAN WAVE of Reedsport, Oregon, with construc- capacities up to 50–100 MW could be EnERGY COnvERSION tion starting in 2010. CPT’s next ocean deployed within the next five to ten years. TECHNOLOGIES deployment is planned for late 2010. Today’s wave energy conversion tech- The first nearshore surge-type wave TIDAL And OPEN-OCEAN nologies are the result of many years energy converter to deliver electricity CURREnt EnERGY COnvERSION of testing, modeling, and development to the grid was the Aquamarine Power TECHNOLOGIES by many organizations.
Recommended publications
  • Coastal Circulation and Water-Column Properties in The
    Coastal Circulation and Water-Column Properties in the War in the Pacific National Historical Park, Guam— Measurements and Modeling of Waves, Currents, Temperature, Salinity, and Turbidity, April–August 2012 Open-File Report 2014–1130 U.S. Department of the Interior U.S. Geological Survey FRONT COVER: Left: Photograph showing the impact of intentionally set wildfires on the land surface of War in the Pacific National Historical Park. Right: Underwater photograph of some of the healthy coral reefs in War in the Pacific National Historical Park. Coastal Circulation and Water-Column Properties in the War in the Pacific National Historical Park, Guam— Measurements and Modeling of Waves, Currents, Temperature, Salinity, and Turbidity, April–August 2012 By Curt D. Storlazzi, Olivia M. Cheriton, Jamie M.R. Lescinski, and Joshua B. Logan Open-File Report 2014–1130 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Suggested citation: Storlazzi, C.D., Cheriton, O.M., Lescinski, J.M.R., and Logan, J.B., 2014, Coastal circulation and water-column properties in the War in the Pacific National Historical Park, Guam—Measurements and modeling of waves, currents, temperature, salinity, and turbidity, April–August 2012: U.S.
    [Show full text]
  • The Exchange of Water Between Prince William Sound and the Gulf of Alaska Recommended
    The exchange of water between Prince William Sound and the Gulf of Alaska Item Type Thesis Authors Schmidt, George Michael Download date 27/09/2021 18:58:15 Link to Item http://hdl.handle.net/11122/5284 THE EXCHANGE OF WATER BETWEEN PRINCE WILLIAM SOUND AND THE GULF OF ALASKA RECOMMENDED: THE EXCHANGE OF WATER BETWEEN PRIMCE WILLIAM SOUND AND THE GULF OF ALASKA A THESIS Presented to the Faculty of the University of Alaska in partial fulfillment of the Requirements for the Degree of MASTER OF SCIENCE by George Michael Schmidt III, B.E.S. Fairbanks, Alaska May 197 7 ABSTRACT Prince William Sound is a complex fjord-type estuarine system bordering the northern Gulf of Alaska. This study is an analysis of exchange between Prince William Sound and the Gulf of Alaska. Warm, high salinity deep water appears outside the Sound during summer and early autumn. Exchange between this ocean water and fjord water is a combination of deep and intermediate advective intrusions plus deep diffusive mixing. Intermediate exchange appears to be an annual phen­ omenon occurring throughout the summer. During this season, medium scale parcels of ocean water centered on temperature and NO maxima appear in the intermediate depth fjord water. Deep advective exchange also occurs as a regular annual event through the late summer and early autumn. Deep diffusive exchange probably occurs throughout the year, being more evident during the winter in the absence of advective intrusions. ACKNOWLEDGMENTS Appreciation is extended to Dr. T. C. Royer, Dr. J. M. Colonell, Dr. R. T. Cooney, Dr. R.
    [Show full text]
  • Robert A. Dalrymple
    Robert A. Dalrymple Department of Civil Engineering and Environmental Engineeering Northwestern University Evanston, IL (410)-299-5245 email: [email protected] Personal Nationality: U. S. Citizen Place of Birth: Camp Rucker, Alabama Date of Birth: May 30, 1945 Marital Status: Married, 1 child Education Institution and Location Degree Year Field University of Florida Ph.D. 1973 Civil and Coastal Engineering Gainesville, Florida University of Hawaii M.S. 1968 Ocean Engineering Honolulu, Hawaii Dartmouth College A.B. 1967 Engineering Sciences Hanover, New Hampshire Professional Experience • Distinguished Professor of Coastal Engineering, Northwestern University, 2017- • Williard and Lillian Hackerman Professor Emeritus of Civil Engineering, Johns Hopkins Uni- versity, 2016-present. 1 • Williard and Lillian Hackerman Professor of Civil Engineering, Johns Hopkins University, 2002-2016. • Department Chair, Civil Engineering, Johns Hopkins University, 2002-2004. • Edward C. Davis Professor Emeritus of Civil and Environmental Engineering, 2002-present. • Edward C. Davis Professor of Civil and Environmental Engineering, 1996-2002. • Visiting Professor, Department of Civil Engineering, Johns Hopkins University, 1999-2000. • Director (and Founder), Center for Applied Coastal Research, University of Delaware, 1989- 2002. • Acting Chair, Department of Civil Engineering, University of Delaware, 1994. • Professor, Department of Civil Engineering, University of Delaware, 1984 to 1996. Also, Professor of Marine Studies, College of Marine Studies, 1984-present. • Associate Professor, Department of Civil Engineering, University of Delaware, 1977 to 1984. Also, Associate Professor of Marine Studies, College of Marine Studies. • Assistant Dean, College of Engineering, University of Delaware, 1980 to January 1982. • Assistant Professor, Department of Civil Engineering, University of Delaware, 1973 to 1977. Also, Assistant Professor of Marine Studies, College of Marine Studies.
    [Show full text]
  • Yearly Report on IRPWIND and EERA JP Wind Activities Work Package 2
    Integrated Research Programme on Wind Energy Project acronym: IRPWIND Grant agreement no 609795 Collaborative project Start date: 01st March 2014 Duration: 4 years Title: Yearly report on IRPWIND and EERA JP Wind Activities Work Package 2 - Deliverable number 2.12 Lead Beneficiary: DTU Delivery date: 25 April 2016 Dissemination level: PU The research leading to these results has received funding from the European Union Seventh Framework Programme under the agreement GA-2013-609795. 1 Table of contents Contents 1. Executive Summary ..................................................................................................... 4 1.1 Status on the EERA Joint Programme on Wind Energy and the Integrated Research Programme on Wind Energy (IRPWIND) ........................................................................................4 1.2 Mobility.................................................................................................................................4 1.3 IRPWIND KPIs – 2014 values ............................................................................................5 1.4 Contact points .....................................................................................................................8 1.5 Reporting on Research Themes ...................................................................................... 10 1.6 Reporting on Milestones and deliverables ..................................................................... 15 1.7 International collaboration in 2015 ...............................................................................
    [Show full text]
  • Part II-1 Water Wave Mechanics
    Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32
    [Show full text]
  • Lesson 8: Currents
    Standards Addressed National Science Lesson 8: Currents Education Standards, Grades 9-12 Unifying concepts and Overview processes Physical science Lesson 8 presents the mechanisms that drive surface and deep ocean currents. The process of global ocean Ocean Literacy circulation is presented, emphasizing the importance of Principles this process for climate regulation. In the activity, students The Earth has one big play a game focused on the primary surface current names ocean with many and locations. features Lesson Objectives DCPS, High School Earth Science Students will: ES.4.8. Explain special 1. Define currents and thermohaline circulation properties of water (e.g., high specific and latent heats) and the influence of large bodies 2. Explain what factors drive deep ocean and surface of water and the water cycle currents on heat transport and therefore weather and 3. Identify the primary ocean currents climate ES.1.4. Recognize the use and limitations of models and Lesson Contents theories as scientific representations of reality ES.6.8 Explain the dynamics 1. Teaching Lesson 8 of oceanic currents, including a. Introduction upwelling, density, and deep b. Lecture Notes water currents, the local c. Additional Resources Labrador Current and the Gulf Stream, and their relationship to global 2. Extra Activity Questions circulation within the marine environment and climate 3. Student Handout 4. Mock Bowl Quiz 1 | P a g e Teaching Lesson 8 Lesson 8 Lesson Outline1 I. Introduction Ask students to describe how they think ocean currents work. They might define ocean currents or discuss the drivers of currents (wind and density gradients). Then, ask them to list all the reasons they can think of that currents might be important to humans and organisms that live in the ocean.
    [Show full text]
  • Hydrothermal Vent Fields and Chemosynthetic Biota on the World's
    ARTICLE Received 13 Jul 2011 | Accepted 7 Dec 2011 | Published 10 Jan 2012 DOI: 10.1038/ncomms1636 Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre Douglas P. Connelly1,*, Jonathan T. Copley2,*, Bramley J. Murton1, Kate Stansfield2, Paul A. Tyler2, Christopher R. German3, Cindy L. Van Dover4, Diva Amon2, Maaten Furlong1, Nancy Grindlay5, Nicholas Hayman6, Veit Hühnerbach1, Maria Judge7, Tim Le Bas1, Stephen McPhail1, Alexandra Meier2, Ko-ichi Nakamura8, Verity Nye2, Miles Pebody1, Rolf B. Pedersen9, Sophie Plouviez4, Carla Sands1, Roger C. Searle10, Peter Stevenson1, Sarah Taws2 & Sally Wilcox11 The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on theM id-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with > 400 °C venting from the world’s deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents. 1 National Oceanography Centre, Southampton, UK.
    [Show full text]
  • Part 3. Oceanic Carbon and Nutrient Cycling
    OCN 401 Biogeochemical Systems (11.03.11) (Schlesinger: Chapter 9) Part 3. Oceanic Carbon and Nutrient Cycling Lecture Outline 1. Models of Carbon in the Ocean 2. Nutrient Cycling in the Ocean Atmospheric-Ocean CO2 Exchange • CO2 dissolves in seawater as a function of [CO2] in the overlying atmosphere (PCO2), according to Henry’s Law: [CO2]aq = k*PCO2 (2.7) where k = the solubility constant • CO2 dissolution rate increases with: - increasing wind speed and turbulence - decreasing temperature - increasing pressure • CO2 enters the deep ocean with downward flux of cold water at polar latitudes - water upwelling today formed 300-500 years ago, when atmospheric [CO2] was 280 ppm, versus 360 ppm today • Although in theory ocean surface waters should be in equilibrium with atmospheric CO2, in practice large areas are undersaturated due to photosythetic C-removal: CO2 + H2O --> CH2O + O2 The Biological Pump • Sinking photosynthetic material, POM, remove C from the surface ocean • CO2 stripped from surface waters is replaced by dissolution of new CO2 from the atmosphere • This is known as the Biological Pump, the removal of inorganic carbon (CO2) from surface waters to organic carbon in deep waters - very little is buried with sediments (<<1% in the pelagic ocean) -most CO2 will ultimately be re-released to the atmosphere in zones of upwelling - in the absence of the biological pump, atmospheric CO2 would be much higher - a more active biological pump is one explanation for lower atmospheric CO2 during the last glacial epoch The Role of DOC and
    [Show full text]
  • Assessment of DUACS Sentinel-3A Altimetry Data in the Coastal Band of the European Seas: Comparison with Tide Gauge Measurements
    remote sensing Article Assessment of DUACS Sentinel-3A Altimetry Data in the Coastal Band of the European Seas: Comparison with Tide Gauge Measurements Antonio Sánchez-Román 1,* , Ananda Pascual 1, Marie-Isabelle Pujol 2, Guillaume Taburet 2, Marta Marcos 1,3 and Yannice Faugère 2 1 Instituto Mediterráneo de Estudios Avanzados, C/Miquel Marquès, 21, 07190 Esporles, Spain; [email protected] (A.P.); [email protected] (M.M.) 2 Collecte Localisation Satellites, Parc Technologique du Canal, 8-10 rue Hermès, 31520 Ramonville-Saint-Agne, France; [email protected] (M.-I.P.); [email protected] (G.T.); [email protected] (Y.F.) 3 Departament de Física, Universitat de les Illes Balears, Cra. de Valldemossa, km 7.5, 07122 Palma, Spain * Correspondence: [email protected]; Tel.: +34-971-61-0906 Received: 26 October 2020; Accepted: 1 December 2020; Published: 4 December 2020 Abstract: The quality of the Data Unification and Altimeter Combination System (DUACS) Sentinel-3A altimeter data in the coastal area of the European seas is investigated through a comparison with in situ tide gauge measurements. The comparison was also conducted using altimetry data from Jason-3 for inter-comparison purposes. We found that Sentinel-3A improved the root mean square differences (RMSD) by 13% with respect to the Jason-3 mission. In addition, the variance in the differences between the two datasets was reduced by 25%. To explain the improved capture of Sea Level Anomaly by Sentinel-3A in the coastal band, the impact of the measurement noise on the synthetic aperture radar altimeter, the distance to the coast, and Long Wave Error correction applied on altimetry data were checked.
    [Show full text]
  • James T. Kirby, Jr
    James T. Kirby, Jr. Edward C. Davis Professor of Civil Engineering Center for Applied Coastal Research Department of Civil and Environmental Engineering University of Delaware Newark, Delaware 19716 USA Phone: 1-(302) 831-2438 Fax: 1-(302) 831-1228 [email protected] http://www.udel.edu/kirby/ Updated September 12, 2020 Education • University of Delaware, Newark, Delaware. Ph.D., Applied Sciences (Civil Engineering), 1983 • Brown University, Providence, Rhode Island. Sc.B.(magna cum laude), Environmental Engineering, 1975. Sc.M., Engineering Mechanics, 1976. Professional Experience • Edward C. Davis Professor of Civil Engineering, Department of Civil and Environmental Engineering, University of Delaware, 2003-present. • Visiting Professor, Grupo de Dinamica´ de Flujos Ambientales, CEAMA, Universidad de Granada, 2010, 2012. • Professor of Civil and Environmental Engineering, Department of Civil and Environmental Engineering, University of Delaware, 1994-2002. Secondary appointment in College of Earth, Ocean and the Environ- ment, University of Delaware, 1994-present. • Associate Professor of Civil Engineering, Department of Civil Engineering, University of Delaware, 1989- 1994. Secondary appointment in College of Marine Studies, University of Delaware, as Associate Professor, 1989-1994. • Associate Professor, Coastal and Oceanographic Engineering Department, University of Florida, 1988. • Assistant Professor, Coastal and Oceanographic Engineering Department, University of Florida, 1984- 1988. • Assistant Professor, Marine Sciences Research Center, State University of New York at Stony Brook, 1983- 1984. • Graduate Research Assistant, Department of Civil Engineering, University of Delaware, 1979-1983. • Principle Research Engineer, Alden Research Laboratory, Worcester Polytechnic Institute, 1979. • Research Engineer, Alden Research Laboratory, Worcester Polytechnic Institute, 1977-1979. 1 Technical Societies • American Society of Civil Engineers (ASCE) – Waterway, Port, Coastal and Ocean Engineering Division.
    [Show full text]
  • Earth Science Ocean Currents May 12, 2020
    High School Science Virtual Learning Earth Science Ocean Currents May 12, 2020 High School Earth Science Lesson: May 12, 2020 Objective/Learning Target: Students will understand major ocean currents and how they impact Earth. Let’s Get Started: 1. What is the difference between weather and climate? 2. What is an ocean? Let’s Get Started: Answer Key 1. Weather is local & short term, climate is regional and long term 2. The ocean is a huge body of saltwater that covers about 71 percent of the Earth's surface Lesson Activity: Directions: 1. Read through the Following slides. 2. Answer the questions on your own paper. MAJOR OCEAN CURRENTS Terms 1. Coriolis Effect movement of wind and water to the right or left that is caused by Earth’s rotation 2. upwelling vertical movement of water toward the ocean’s surface 3. surface current is an ocean current that moves water horizontally and does not reach a depth of more than 400m. 4. gyre is when major surface currents form a circular system. MAJOR OCEAN CURRENTS A current is a large volume of water flowing in a certain direction. CAUSES OF OCEAN CURRENTS 1. One cause of an ocean current is friction between wind and the ocean surface. ○ Earth’s prevailing winds influence the formation and direction of surface currents. ○ Ex: tides, waves 2. In addition to the wind, the direction surface currents flow depends on the Coriolis effect. ○ The Coriolis effect results from Earth’s rotation. It influences the direction of flow of Earth’s water and air. 3.
    [Show full text]
  • Ocean Vocabulary
    Mrs. Hansgen's 7th Grade Science Name Date Ocean Vocabulary wave period breaker El Nino neap tides Coriolis effect swelling whitecap tidal range trough high tide tsunami deep current crest spring tides low tide surf surface current storm surge wavelength upwelling Matching Match each definition with a word. 1. Lowest point of a wave 2. a white, foaming wave with a very steep crest that breaks in the open ocean before the wave gets close to the shore 3. A curving of a moving object from a straight path due to the Earth's rotation. 4. An ocean current formed when steady winds blow over the surface of the ocean. 5. rolling waves that move in a steady procession across the ocean 6. when the ocean tide reaches the highest point on the shoreline 7. An abnormal climate event that occurs every 2 to 7 years in the Pacific Ocean, causing changes in winds, currents, and weather patterns, that can lead to dramatic changes. 8. a wave that forms when a large volume of ocean water is suddenly moved up or down 9. The distance between two adjacent wave crests or wave troughs 10. tides with minimum daily tidal range that occur during the first and third quarters of the moon 11. Highest point of a wave 12. a process in which cold, nutrient-rich water from the deep ocean rises to the surface and replaces warm surface water 13. ocean tide at its lowest point on the shore 14. the area between the breaker zone and the shore 15.
    [Show full text]