An Invitation to Coupling and Copulas: with Applications to Multisensory Modeling Hans Colonius University of Oldenburg, Oldenburg, Germany H I G H L I G H T S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparing Approximations for Risk Measures Related to Sums of Correlated Lognormal Random Variables
COMPARING APPROXIMATIONS FOR RISK MEASURES RELATED TO SUMS OF CORRELATED LOGNORMAL RANDOM VARIABLES MASTERARBEIT Technische UniversitÄatChemnitz FakultÄatfÄurMathematik Integrierter Internationaler Master- und Promotionsstudiengang Mathematik eingereicht von Maryna Karniychuk geboren am 11. Juli 1978 in Cherepovets (Russland) Betreuer: Dr.rer.nat. Matthias Richter (TU Chemnitz) Tag der Verteidigung: 15. Dezember 2006 1 Contents 1 Introduction . 2 1.1 Posing the problem . 2 1.2 Basic concepts and notations . 5 2 Ordering random variables . 8 3 Comonotonicity . 13 3.1 Comonotonic sets and random vectors . 13 3.2 Examples of comonotonicity . 17 4 Convex bounds for sums of random variables . 19 4.1 General results . 19 4.2 Closed-form expressions for valuing convex bounds . 23 4.3 Choice of the conditioning random variable . 28 5 Risk measures . 31 5.1 Well-known risk measures . 31 5.2 Distortion risk measures . 34 5.3 Distortion risk measures and comonotonicity . 38 5.4 Concave distortion risk measures . 40 6 Applications . 43 6.1 Risk measures for sums of dependent lognormal random variables . 43 6.2 Auxiliary calculations . 46 7 Moment matching approximations . 48 7.1 The reciprocal Gamma approximation . 48 7.2 The lognormal approximation . 51 8 Numerical illustration . 52 9 Short summary and outlook . 60 10 References . 61 11 ErklÄarung . 64 12 Thesen . 65 13 Acknowledgements . 67 1 Introduction 2 1 Introduction 1.1 Posing the problem The control of the risks of banking operations is understood as an important public task. International organizations and professional associations are busy to develop new concepts to measure and control risks. The aim is to achieve a global standard in risk controlling. -
Copula As a Bridge Between Probability Theory and Fuzzy Logic
Copula as a Bridge Between Probability Theory and Fuzzy Logic Germano Resconi and Boris Kovalerchuk Abstract This work shows how dependence in many-valued logic and probability theory can be fused into one concept by using copulas and marginal probabilities. It also shows that the t-norm concept used in fuzzy logic is covered by this approach. This leads to a more general statement that axiomatic probability theory covers logic structure of fuzzy logic. This paper shows the benefits of using structures that go beyond the simple concepts of classical logic and set theory for the modeling of dependences. 1 Introduction Modern approaches for modeling uncertainty include Probability Theory (PT), Many-Valued Logic (MVL), Fuzzy Logic (FL), and others. PT is more connected with the classical set theory, classical propositional logic, and FL is more connected with fuzzy sets and MVL. The link of the concept of probability with the classical set theory and classical propositional logic is relatively straightforward for the case of a single variable that is based on the use of set operations and logic propositions. In contrast, modeling joint probability for multiple variables is more challenging because it involves complex relations and dependencies between variables. One of the goals of this work is to clarify the logical structure of a joint probability for multiple variables. Another goal is to clarify links between different logics and joint probability for multiple variables. Differences between concepts of probability, fuzzy sets, possibility and other uncertainty measures have been studied for a long time [1]. Recently several new attempts have been made to connect the concepts of probability, possibility, and G. -
Econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Erdely, Arturo Article Value at risk and the diversification dogma Revista de Métodos Cuantitativos para la Economía y la Empresa Provided in Cooperation with: Universidad Pablo de Olavide, Sevilla Suggested Citation: Erdely, Arturo (2017) : Value at risk and the diversification dogma, Revista de Métodos Cuantitativos para la Economía y la Empresa, ISSN 1886-516X, Universidad Pablo de Olavide, Sevilla, Vol. 24, pp. 209-219 This Version is available at: http://hdl.handle.net/10419/195388 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. https://creativecommons.org/licenses/by-sa/4.0/ www.econstor.eu REVISTA DE METODOS´ CUANTITATIVOS PARA LA ECONOM´IA Y LA EMPRESA (24). -
Download From
City Research Online City, University of London Institutional Repository Citation: Kyriakou, I. ORCID: 0000-0001-9592-596X (2010). Efficient valuation of exotic derivatives with path-dependence and early exercise features. (Unpublished Doctoral thesis, City University London) This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/23459/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] E¢ cient valuation of exotic derivatives with path-dependence and early-exercise features by Ioannis Kyriakou A thesis submitted in partial ful…lment of the requirements for the degree of Doctor of Philosophy City University, London Sir John Cass Business School Faculty of Actuarial Science and Insurance November 2010 Acknowledgements I would like to thank …rst my supervisors Dr Laura Ballotta and Professor AlešCernýµ without whom, this research would not have been done. I thank also Dr Iqbal Owadally who motivated me towards the research path. -
An Introduction to Copulas
IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh An Introduction to Copulas These notes provide an introduction to modeling with copulas. Copulas are the mechanism which allows us to isolate the dependency structure in a multivariate distribution. In particular, we can construct any multivariate distribution by separately specifying the marginal distributions and the copula. Copula modeling has played an important role in finance in recent years and has been a source of controversy and debate both during and since the financial crisis of 2008 / 2009. In these notes we discuss the main results including Sklar's Theorem and the Fr´echet-Hoeffding bounds, and give several different examples of copulas including the Gaussian and t copulas. We discuss various measures of dependency including rank correlations and coefficient of tail dependence and also discuss various fallacies associated with the commonly used Pearson correlation coefficient. After discussing various methods for calibrating copulas we end with an application where we use the Gaussian copula model to price a simple stylized version of a collateralized debt obligation or CDO. CDO's were credited with playing a large role in the financial crisis { hence the infamy of the Gaussian copula model. 1 Introduction and Main Results Copulas are functions that enable us to separate the marginal distributions from the dependency structure of a given multivariate distribution. They are useful for several reasons. First, they help to expose and understand the various fallacies associated with correlation. They also play an important role in pricing securities that depend on many underlying securities, e.g.