Security Measures in Openssh
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Secure Telnet
The following paper was originally published in the Proceedings of the Fifth USENIX UNIX Security Symposium Salt Lake City, Utah, June 1995. STEL: Secure TELnet David Vincenzetti, Stefano Taino, and Fabio Bolognesi Computer Emergency Resource Team Italy Department of Computer Science University of Milan, Italy For more information about USENIX Association contact: 1. Phone: 510 528-8649 2. FAX: 510 548-5738 3. Email: [email protected] 4. WWW URL: http://www.usenix.org STEL Secure TELnet David Vincenzetti Stefano Taino Fabio Bolognesi fvince k taino k b ologdsiunimiit CERTIT Computer Emergency Response Team ITaly Department of Computer Science University of Milan ITALY June Abstract Eavesdropping is b ecoming rampant on the Internet We as CERTIT have recorded a great numb er of sning attacks in the Italian community In fact sning is the most p opular hackers attack technique all over the Internet This pap er presents a secure telnet implementation whichhas b een designed by the Italian CERT to makeeavesdropping ineective to remote terminal sessions It is not to b e considered as a denitive solution but rather as a bandaid solution to deal with one of the most serious security threats of the moment Intro duction STEL stands for Secure TELnet We started developing STEL at the University of Milan when we realized that eavesdropping was a very serious problem and we did not like the freeware solutions that were available at that time It was ab out three years ago Still as far as we know e tapping problem and there are no really satisfying -
Unix Security
Unix Security Vulnerability Assessment Course All materials are licensed under a Creative Commons “Share Alike” license. ■ http://creativecommons.org/licenses/by-sa/3.0/ 2 Agenda ■ Why assess ■ Where are we in the process ■ What’s needed ■ Defining vulnerabilities ■ NIST 800-53A controls ■ Assessment Exercise ■ Security Exercise ■ Conclusion 3 Vulnerability Assessment ■ Provides the opportunity to address weaknesses before an enemy can exploit them ■ Implementation: Scanning tools that identify vulnerabilities in computer hardware, software, networks and operating systems ■ Common techniques – Multiple tools – one tool may not identify all vulnerabilities – Ability to identify backdoors security perimeter, e.g. modems, VPNs, etc. – all potential vulnerabilities need to be assessed – Correction verification mechanism – ability to check if vulnerability has been eliminated ■ Compliance with OMB, DOD, DHS policy – Utilize NIST 800-53 and 800-53A – DOD 8500 series 4 What’s Needed ■ Unix experience – Hands on experience: configuration, managing, building various Unix systems – Working knowledge of best practices ■ Security Experience – Intimate knowledge of how to secure a system – Prior experience with CIS Benchmark, DISA STIG/SRR ■ Data Collection – Network scans from NMAP and Nessus – Host output from any data collection tools ■ Other Skills – Need to work with administrators – Put vulnerability in their language – Be tedious while looking for vulnerabilities – Work well in a team 5 Defining Unix Vulnerability Assessment ■ Defining Unix Vulnerability Assessment – Unix Vulnerability Assessment – Unix Security Issues – Security Paradigm – System Hardening: The CIS Philosophy – Network Based Vulnerability Scanning – Host (Local) Vulnerability Scanning – Remote vs. Local Vulnerability Scanning – Common Problems and Issues – Mitigation 6 Unix Vulnerability Assessment ■ Definition – Examining the operating characteristics of a Unix environment remotely and locally in order to accurately assess its security posture (or profile). -
Computer Network Security Protocols: a Review
International Journal of Enhanced Research in Management & Computer Applications ISSN: 2319-7471, Vol. 5 Issue 1, January-2016 Computer Network Security Protocols: A Review Anil Kumar Programmer-Cum-Networking Engineer, Haryana Roadways, Transport Department, Govt of Haryana, India. ABSTRACT Network security is a complicated subject, historically only tackled by well-trained and experienced experts. However, as more and more people become ``wired'', an increasing number of people need to understand the basics of security in a networked world. This document was written with the basic computer user and information systems manager in mind, explaining the concepts needed to read through the hype in the marketplace and understand risks and how to deal with them. Keywords: Protocol, Security, Secure Socket Layer (SSL) and Transport Layer Security (TLS) Protocols; secure IP (IPSec); Secure HTTP (S-HTTP), secure E-mail (PGP and S/MIME), DNDSEC, SSH. 1. INTRODUCTION The rapid growth of the Internet as bothan individual and business communication channel has created a growing demand forsecurity and privacy in this electronic communication channel. Security and privacy are essential if individual communication is to continue ande-commerce is to thrivein cyberspace. The call for and desire for security and privacy has led to several security protocols and standards. Among these are: Secure Socket Layer (SSL) and Transport Layer Security (TLS) Protocols; secure IP (IPSec); Secure HTTP (S-HTTP), secure E-mail ( PGP and S/MIME), DNDSEC, SSH, and others. In this paper I discuss these protocols and standards within the framework of the network protocol stack as follow: Application Layer Transport Layer Network Layer Data Link Layer: PGP, SSL IPSec PPP S/MIME TLS VPN RADIUS S-HTTP TACACS+ HTTPS SET KERBEROS 2. -
Unix Security Overview: 1
CIS/CSE 643: Computer Security (Syracuse University) Unix Security Overview: 1 Unix Security Overview 1 User and Group • Users – root: super user (uid = 0) – daemon: handle networks. – nobody: owns no files, used as a default user for unprivileged operations. ∗ Web browser can run with this mode. – User needs to log in with a password. The encrypted password is stored in /etc/shadow. – User information is stored in /etc/passwd, the place that was used to store passwords (not anymore). The following is an example of an entry in this file. john:x:30000:40000:John Doe:/home/john:/usr/local/bin/tcsh • Groups – Sometimes, it is more convenient if we can assign permissions to a group of users, i.e. we would like to assign permission based on groups. – A user has a primary group (listed in /etc/passwd), and this is the one associated to the files the user created. – Any user can be a member of multiple groups. – Group member information is stored in /etc/group % groups uid (display the groups that uid belongs to) – For systems that use NIS (Network Information Service), originally called Yellow Page (YP), we can get the group information using the command ypcat. % ypcat group (can display all the groups and their members) 2 File Permissions • File Permissions – The meaning of the permission bits in Unix. ∗ Owner (u), Group (g), and Others (o). ∗ Readable (r), Writable (w), and Executable (x). ∗ Example: -rwxrwxrwx (777) • Permissions on Directories: – r: the directory can be listed. – w: can create/delete a file or a directory within the directory. -
Hardware Based Compression in Ceph OSD with BTRFS
Hardware Based Compression in Ceph OSD with BTRFS Weigang Li ([email protected]) Tushar Gohad ([email protected]) Data Center Group Intel Corporation 2016 Storage Developer Conference. © Intel Corp. All Rights Reserved. Credits This work wouldn’t have been possible without contributions from – Reddy Chagam ([email protected]) Brian Will ([email protected]) Praveen Mosur ([email protected]) Edward Pullin ([email protected]) 2 2016 Storage Developer Conference. © Intel Corp. All Rights Reserved. Agenda Ceph A Quick Primer Storage Efficiency and Security Features Offload Mechanisms – Software and Hardware Compression in Ceph OSD with BTRFS Compression in BTRFS and Ceph Hardware Acceleration with QAT PoC implementation Performance Results Key Takeaways 3 2016 Storage Developer Conference. © Intel Corp. All Rights Reserved. Ceph Open-source, object-based scale-out storage system Software-defined, hardware-agnostic – runs on commodity hardware Object, Block and File support in a unified storage cluster Highly durable, available – replication, erasure coding Replicates and re-balances dynamically 4 Image source: http://ceph.com/ceph-storage 2016 Storage Developer Conference. © Intel Corp. All Rights Reserved. Ceph Scalability – CRUSH data placement, no single POF Enterprise features – snapshots, cloning, mirroring Most popular block storage for Openstack use cases 10 years of hardening, vibrant community 5 Source: http://www.openstack.org/assets/survey/April-2016-User-Survey-Report.pdf 2016 Storage Developer Conference. © Intel Corp. All Rights Reserved. Ceph: Architecture OSD OSD OSD OSD OSD btrfs xfs ext4 POSIX Backend Backend Backend Backend Backend Bluestore KV DISK DISK DISK DISK DISK Commodity Servers M M M 6 2016 Storage Developer Conference. -
Evaluating UNIX Security Previous Screen Allen B
84-01-15.1 Evaluating UNIX Security Previous screen Allen B. Lum Payoff The UNIX operating system's basic security features include password protection, access permission, user profiles, shell scripts, and file ownership. Because new and enhanced UNIX security features are continually being added to these features in response to the demands of an increasingly competitive user community, information security professionals must begin with an understanding of the basic UNIX security environment. This article covers the fundamental security features that can be found in most of the currently available versions of the UNIX operating system. Several checklists are included at the end of the article to assist administrators in ensuring the security of UNIX systems. Problems Addressed The UNIX operating system was originally developed for use by programmers within an open systems environment. The adoption of UNIX as a common operating system across several different platforms has increased the need for security beyond its original purpose. As a result, many UNIX installations have less than optimal security. In addition, there are several versions of UNIX on the market today with differing security features. This article discusses basic access controls (e.g., passwords) and directory and file permissions within the UNIX system. The concepts discussed are applicable to all versions of UNIX unless specifically noted otherwise. UNIX History As the majority of UNIX users know, UNIX was developed at AT Bell Laboratories in the late 1960s by Thompson and Ritchie; the name UNIXis a contraction of uni and multics. The original UNIX system software was written in the assembler language to run on the digital PDP-7 computer. -
GNUPG Open Source Encryption on HP Nonstop
GNUPG Open Source Encryption on HP NonStop Damian Ward NonStop Solutions Architect / BITUG Vice Chairman Confidential Introduction What am I going to talk about today • About Me • About VocaLink • History of encryption • PGP to GNUPG • PGP encryption walkthrough • Installing GNUPG • Use Case • Questions..? Please feel free to ask as we go through the presentation. Confidential 2 Introduction About your presenter • Damian Ward • 20+ years HP NonStop and Payments experience • Career spanning: − Operations, Application Programming, System Management, Programme Management, Technical Specialist, Solutions Architect, Enterprise Architect, Infrastructure Architect • Specialities: − HP NonStop systems and architecture, Enterprise Architecture, Encryption, Availability Management, ATM Systems, Payments Processing, Capacity Planning, System modelling, Fraud, Mobile and Internet technologies, Programming, Emerging Technologies and Robotics • BITUG Vice Chairman 2011 • BITUG Chairman 2012 Confidential 3 Introduction VocaLink: cards processing landscape Direct connection to in house processing system Indirect ATM acquirer and card issuer connection (via VocaLinkCSB) FIS Connex Advantage Connections to Mobile Switch with resillient Operators Indirect ATM connection (via third telecommunication party processor) connections to each customer Connections to Direct connection overseas to Post Office via TNS CSB schemes and systems ATM and POS international banks acquiring and issuing connections via gateway connections to international schemes Confidential -
Intel® Quick Sync Video and Ffmpeg Installation and Validation Guide
White paper Intel® Quick Sync Video and FFmpeg Installation and Validation Guide Introduction Intel® Quick Sync Video technology on Intel® Iris™ Pro Graphics and Intel® HD graphics provides transcode acceleration on Linux* systems in FFmpeg* 2.8 and later editions. This paper is a detailed step-by-step guide to enabling h264_qsv, mpeg2_qsv, and hevc_qsv hardware accelerated codecs in the FFmpeg framework. For a quicker overview, please see this article. Performance note: The *_qsv implementations are intended to provide easy access to Intel hardware capabilities for FFmpeg users, but are less efficient than custom applications optimized for Intel® Media Server Studio. Document note: Monospace type = command line inputs/outputs. Pink = highlights to call special attention to important command line I/O details. Getting Started 1. Install Intel Media Server Studio for Linux. Download from software.intel.com/intel-media-server- studio. This is a prerequisite for the *_qsv codecs as it provides the foundation for encode acceleration. See the next chapter for more info on edition choices. Note: Professional edition install is required for hevc_qsv. 2. Get the latest FFmpeg source from https://www.FFmpeg.org/download.html. Intel Quick Sync Video support is available in FFmpeg 2.8 and later editions. The install steps outlined below were verified with ffmpeg release 3.2.2 3. Configure FFmpeg with “--enable –libmfx –enable-nonfree”, build, and install. This requires copying include files to /opt/intel/mediasdk/include/mfx and adding a libmfx.pc file. More details below. 4. Test transcode with an accelerated codec such as “-vcodec h264_qsv” on the FFmpeg command line. -
FPGA-Based ZLIB/GZIP Compression As an Nvme Namespace
FPGA-Based ZLIB/GZIP Compression as an NVMe Namespace Saeed Fouladi Fard Eideticom 2018 Storage Developer Conference. © Eidetic Communications Inc. All Rights Reserved. 1 Why NVMe ❒ NVMe: A standard specification for accessing non-volatile media over PCIe ❒ High-speed and CPU efficient ❒ In-box drivers available for major OSes ❒ Allows peer-to-peer data transfers ❒ Reduces system memory access ❒ Frees CPU time 2018 Storage Developer Conference. © Eidetic Communications Inc. All Rights Reserved. 2 Why NVMe, Cont’d Host ❒ NVMe can be used as a high speed Memory CPU platform for using PCIe and sharing NVMe SSD NVMe SSD NVMe SSD NVMe accelerators with Accelerator Accelerator Accelerator NVMe NVMe NVMe low overhead ❒ Easy to use Accels 2018 Storage Developer Conference. © Eidetic Communications Inc. All Rights Reserved. 3 Hardware Platform TM ❒ Called NoLoad = NVMe Offload TM ❒ NoLoad can present FPGA accelerators as NVMe namespaces to the host computer or peers ❒ Accelerator integration, verification, and discovery is mostly automated ❒ Host software can be added to use the accelerator Streamlined Accelerator Integration 2018 Storage Developer Conference. © Eidetic Communications Inc. All Rights Reserved. 4 NoLoadTM Software Management Applications ❒ Userspace: both kernel nvme-cli & userspace frameworks nvme-of supported etc libnoload SPDK ❒ OS: use inbox NVMe driver (no changes) TM ❒ Hardware: NoLoad Hardware Eval Kits 2018 Storage Developer Conference. © Eidetic Communications Inc. All Rights Reserved. 5 Accelerators as NVMe devices NVMe NSs: 3 Optane SSDs, 3 Compression Accels, 1 RAM-Drive 2018 Storage Developer Conference. © Eidetic Communications Inc. All Rights Reserved. 6 Peer-to-Peer Access ❒ P2P Transfers bypass DRAM DRAM CPU memory and other DDR DDR PCIe subsystems CPU CPU ❒ P2P uses PCIe EP’s memory (e.g., CMB,BAR) PCIe PCIe PCIe PCIe NoLoad NVMe NVMe NVMe ❒ A P2P capable Root CMB Complex or PCIe switch is needed SSD A SSD B SSD A NoLoad with Compression Legacy Datapath Peer-2-Peer Datapath 2018 Storage Developer Conference. -
Scripting the Openssh, SFTP, and SCP Utilities on I Scott Klement
Scripting the OpenSSH, SFTP, and SCP Utilities on i Presented by Scott Klement http://www.scottklement.com © 2010-2015, Scott Klement Why do programmers get Halloween and Christmas mixed-up? 31 OCT = 25 DEC Objectives Of This Session • Setting up OpenSSH on i • The OpenSSH tools: SSH, SFTP and SCP • How do you use them? • How do you automate them so they can be run from native programs (CL programs) 2 What is SSH SSH is short for "Secure Shell." Created by: • Tatu Ylönen (SSH Communications Corp) • Björn Grönvall (OSSH – short lived) • OpenBSD team (led by Theo de Raadt) The term "SSH" can refer to a secured network protocol. It also can refer to the tools that run over that protocol. • Secure replacement for "telnet" • Secure replacement for "rcp" (copying files over a network) • Secure replacement for "ftp" • Secure replacement for "rexec" (RUNRMTCMD) 3 What is OpenSSH OpenSSH is an open source (free) implementation of SSH. • Developed by the OpenBSD team • but it's available for all major OSes • Included with many operating systems • BSD, Linux, AIX, HP-UX, MacOS X, Novell NetWare, Solaris, Irix… and yes, IBM i. • Integrated into appliances (routers, switches, etc) • HP, Nokia, Cisco, Digi, Dell, Juniper Networks "Puffy" – OpenBSD's Mascot The #1 SSH implementation in the world. • More than 85% of all SSH installations. • Measured by ScanSSH software. • You can be sure your business partners who use SSH will support OpenSSH 4 Included with IBM i These must be installed (all are free and shipped with IBM i **) • 57xx-SS1, option 33 = PASE • 5733-SC1, *BASE = Portable Utilities • 5733-SC1, option 1 = OpenSSH, OpenSSL, zlib • 57xx-SS1, option 30 = QShell (useful, not required) ** in v5r3, had 5733-SC1 had to be ordered separately (no charge.) In v5r4 or later, it's shipped automatically. -
Zlib Home Site
zlib Home Site http://zlib.net/ A Massively Spiffy Yet Delicately Unobtrusive Compression Library (Also Free, Not to Mention Unencumbered by Patents) (Not Related to the Linux zlibc Compressing File-I/O Library) Welcome to the zlib home page, web pages originally created by Greg Roelofs and maintained by Mark Adler . If this page seems suspiciously similar to the PNG Home Page , rest assured that the similarity is completely coincidental. No, really. zlib was written by Jean-loup Gailly (compression) and Mark Adler (decompression). Current release: zlib 1.2.6 January 29, 2012 Version 1.2.6 has many changes over 1.2.5, including these improvements: gzread() can now read a file that is being written concurrently gzgetc() is now a macro for increased speed Added a 'T' option to gzopen() for transparent writing (no compression) Added deflatePending() to return the amount of pending output Allow deflateSetDictionary() and inflateSetDictionary() at any time in raw mode deflatePrime() can now insert bits in the middle of the stream ./configure now creates a configure.log file with all of the results Added a ./configure --solo option to compile zlib with no dependency on any libraries Fixed a problem with large file support macros Fixed a bug in contrib/puff Many portability improvements You can also look at the complete Change Log . Version 1.2.5 fixes bugs in gzseek() and gzeof() that were present in version 1.2.4 (March 2010). All users are encouraged to upgrade immediately. Version 1.2.4 has many changes over 1.2.3, including these improvements: -
Z/OS Openssh User's Guide
z/OS Version 2 Release 4 z/OS OpenSSH User's Guide IBM SC27-6806-40 Note Before using this information and the product it supports, read the information in “Notices” on page 503. This edition applies to Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases and modifications until otherwise indicated in new editions. Last updated: 2020-11-16 © Copyright International Business Machines Corporation 2015, 2019. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures................................................................................................................. ix Tables.................................................................................................................. xi About this document...........................................................................................xiii Who should use this document?............................................................................................................... xiii z/OS information........................................................................................................................................xiii Discussion list...................................................................................................................................... xiii How to send your comments to IBM......................................................................xv If you have a technical problem.................................................................................................................xv