Marie Curie and Her Contemporaries
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Alfred Nobel
www.bibalex.org/bioalex2004conf The BioVisionAlexandria 2004 Conference Newsletter November 2003 Volume 1, Issue 2 BioVisionAlexandria ALFRED NOBEL 2004 aims to celebrate the The inventor, the industrialist outstanding scientists and scholars, in a he Nobel Prize is one of the highest distinctions recognized, granting its winner century dominated by instant fame. However, many do not know the interesting history and background technological and T that led to this award. scientific revolutions, through its It all began with a chemist, known as Alfred Nobel, born in Stockholm, Sweden in 1833. Nobel Day on 3 April Alfred Nobel moved to Russia when he was eight, where his father, Immanuel Nobel, 2004! started a successful mechanical workshop. He provided equipment for the Russian Army and designed naval mines, which effectively prevented the British Royal Navy from moving within firing range of St. Petersburg during the Crimean War. Immanuel Nobel was also a pioneer in the manufacture of arms, and in designing steam engines. INSIDE Scientific awards .........3 Immanuel’s success enabled him to Alfred met Ascanio Sobrero, the Italian Confirmed laureates ....4 Lady laureates ............7 provide his four sons with an excellent chemist who had invented Nitroglycerine education in natural sciences, languages three years earlier. Nitroglycerine, a and literature. Alfred, at an early age, highly explosive liquid, was produced by acquired extensive literary knowledge, mixing glycerine with sulfuric and nitric mastering many foreign languages. His acid. It was an invention that triggered a Nobel Day is interest in science, especially chemistry, fascination in the young scientist for many dedicated to many of was also apparent. -
Unerring in Her Scientific Enquiry and Not Afraid of Hard Work, Marie Curie Set a Shining Example for Generations of Scientists
Historical profile Elements of inspiration Unerring in her scientific enquiry and not afraid of hard work, Marie Curie set a shining example for generations of scientists. Bill Griffiths explores the life of a chemical heroine SCIENCE SOURCE / SCIENCE PHOTO LIBRARY LIBRARY PHOTO SCIENCE / SOURCE SCIENCE 42 | Chemistry World | January 2011 www.chemistryworld.org On 10 December 1911, Marie Curie only elements then known to or ammonia, having a water- In short was awarded the Nobel prize exhibit radioactivity. Her samples insoluble carbonate akin to BaCO3 in chemistry for ‘services to the were placed on a condenser plate It is 100 years since and a chloride slightly less soluble advancement of chemistry by the charged to 100 Volts and attached Marie Curie became the than BaCl2 which acted as a carrier discovery of the elements radium to one of Pierre’s electrometers, and first person ever to win for it. This they named radium, and polonium’. She was the first thereby she measured quantitatively two Nobel prizes publishing their results on Boxing female recipient of any Nobel prize their radioactivity. She found the Marie and her husband day 1898;2 French spectroscopist and the first person ever to be minerals pitchblende (UO2) and Pierre pioneered the Eugène-Anatole Demarçay found awarded two (she, Pierre Curie and chalcolite (Cu(UO2)2(PO4)2.12H2O) study of radiactivity a new atomic spectral line from Henri Becquerel had shared the to be more radioactive than pure and discovered two new the element, helping to confirm 1903 physics prize for their work on uranium, so reasoned that they must elements, radium and its status. -
Eve Curie-Labouisse 1904-2007
The Invisible Light The Journal of The British Society for the History of Radiology 21st Birthday Year 1987-2008 The Centenary of the death of Henri Becquerel Number 28, May 2008 ISSN 1479-6945 (Print) ISSN 1479-6953 (Online) http://www.bshr.org.uk 2 Contents Page Editorial Notes 3 X-RAY THERAPY AND THE EARLY YEARS, 1902-1907 by Noel Timothy 4 Start of the “Radium Story” by Richard Mould 11 “The first Argentinean radiological journal” by Alfredo Buzzi and César Gotta 13 “Eve Curie-Labouisse 1904-2007” by Richard F. Mould 16 British Society for the History of Medicine, Congress September 2009 in Belfast 30 Interesting Web sites 31 “William Hunter and the Art and Science of Eighteenth-Century Collecting” 31 And finally: Betty Boop 32 Editorial Notes Our Radiology History Committee was founded way back in 1987. I hope everyone likes this issue of ‘The Invisible Light’ in this our 21st Birthday Year. There are four good articles for you to read. Do please consider getting involved in our committee and do contact me if you are interested. I would be delighted to include any of your articles in the next issue of ‘The Invisible Light.’ Please send me any material that you have. This journal is also available on-line to members. If you wish to receive it in that way please contact Jean Barrett at [email protected] This year 2008 is the centenary year of the death of Henri Becquerel who discovered natural radioactivity and was joint Nobel laureate with Marie and Pierre. -
Ion Trap Nobel
The Nobel Prize in Physics 2012 Serge Haroche, David J. Wineland The Nobel Prize in Physics 2012 was awarded jointly to Serge Haroche and David J. Wineland "for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems" David J. Wineland, U.S. citizen. Born 1944 in Milwaukee, WI, USA. Ph.D. 1970 Serge Haroche, French citizen. Born 1944 in Casablanca, Morocco. Ph.D. from Harvard University, Cambridge, MA, USA. Group Leader and NIST Fellow at 1971 from Université Pierre et Marie Curie, Paris, France. Professor at National Institute of Standards and Technology (NIST) and University of Colorado Collège de France and Ecole Normale Supérieure, Paris, France. Boulder, CO, USA www.college-de-france.fr/site/en-serge-haroche/biography.htm www.nist.gov/pml/div688/grp10/index.cfm A laser is used to suppress the ion’s thermal motion in the trap, and to electrode control and measure the trapped ion. lasers ions Electrodes keep the beryllium ions inside a trap. electrode electrode Figure 2. In David Wineland’s laboratory in Boulder, Colorado, electrically charged atoms or ions are kept inside a trap by surrounding electric fields. One of the secrets behind Wineland’s breakthrough is mastery of the art of using laser beams and creating laser pulses. A laser is used to put the ion in its lowest energy state and thus enabling the study of quantum phenomena with the trapped ion. Controlling single photons in a trap Serge Haroche and his research group employ a diferent method to reveal the mysteries of the quantum world. -
April 17-19, 2018 the 2018 Franklin Institute Laureates the 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018
april 17-19, 2018 The 2018 Franklin Institute Laureates The 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018 Welcome to The Franklin Institute Awards, the a range of disciplines. The week culminates in a grand United States’ oldest comprehensive science and medaling ceremony, befitting the distinction of this technology awards program. Each year, the Institute historic awards program. celebrates extraordinary people who are shaping our In this convocation book, you will find a schedule of world through their groundbreaking achievements these events and biographies of our 2018 laureates. in science, engineering, and business. They stand as We invite you to read about each one and to attend modern-day exemplars of our namesake, Benjamin the events to learn even more. Unless noted otherwise, Franklin, whose impact as a statesman, scientist, all events are free, open to the public, and located in inventor, and humanitarian remains unmatched Philadelphia, Pennsylvania. in American history. Along with our laureates, we celebrate his legacy, which has fueled the Institute’s We hope this year’s remarkable class of laureates mission since its inception in 1824. sparks your curiosity as much as they have ours. We look forward to seeing you during The Franklin From sparking a gene editing revolution to saving Institute Awards Week. a technology giant, from making strides toward a unified theory to discovering the flow in everything, from finding clues to climate change deep in our forests to seeing the future in a terahertz wave, and from enabling us to unplug to connecting us with the III world, this year’s Franklin Institute laureates personify the trailblazing spirit so crucial to our future with its many challenges and opportunities. -
ARIE SKLODOWSKA CURIE Opened up the Science of Radioactivity
ARIE SKLODOWSKA CURIE opened up the science of radioactivity. She is best known as the discoverer of the radioactive elements polonium and radium and as the first person to win two Nobel prizes. For scientists and the public, her radium was a key to a basic change in our understanding of matter and energy. Her work not only influenced the development of fundamental science but also ushered in a new era in medical research and treatment. This file contains most of the text of the Web exhibit “Marie Curie and the Science of Radioactivity” at http://www.aip.org/history/curie/contents.htm. You must visit the Web exhibit to explore hyperlinks within the exhibit and to other exhibits. Material in this document is copyright © American Institute of Physics and Naomi Pasachoff and is based on the book Marie Curie and the Science of Radioactivity by Naomi Pasachoff, Oxford University Press, copyright © 1996 by Naomi Pasachoff. Site created 2000, revised May 2005 http://www.aip.org/history/curie/contents.htm Page 1 of 79 Table of Contents Polish Girlhood (1867-1891) 3 Nation and Family 3 The Floating University 6 The Governess 6 The Periodic Table of Elements 10 Dmitri Ivanovich Mendeleev (1834-1907) 10 Elements and Their Properties 10 Classifying the Elements 12 A Student in Paris (1891-1897) 13 Years of Study 13 Love and Marriage 15 Working Wife and Mother 18 Work and Family 20 Pierre Curie (1859-1906) 21 Radioactivity: The Unstable Nucleus and its Uses 23 Uses of Radioactivity 25 Radium and Radioactivity 26 On a New, Strongly Radio-active Substance -
Radiation and Modern Life: Fulfilling Marie Curie's Dream
DEPARTMENTS Book Reviews Radiation and Modern Life: Fulfilling Marie Curie’s Dream A.E. Waltar, ed. Amherst, NY: Prometheus Books, 2004, 336 pages, $28 Several aspects of this book are initially off-putting, brief chapter on medicine inexplicably includes a description including the author’s style of writing. However, having of MRI but otherwise covers diagnostic and therapeutic uses read the book, set it aside, and let its message ‘‘soak in,’’ I of ionizing radiation at the same level of sophistication as am comfortable saying that I learned several things from the rest of the topics. The chapter on electricity discusses the book and do not regret having read it. I shall keep it in the growing demand for electrical power and the relative my library as a resource for those rare occasions when I am merits of nuclear and other means of power generation in called on to know something more about radiation than just meeting that demand. I particularly enjoyed the chapter a little bit of nuclear medicine physics. on modern industry, which describes several ways that The book has a scope far broader than the medical ap- radiation makes modern manufacturing methods practical plications of ionizing radiation and thus serves to position the and efficient. The chapter on transportation is largely just work of nuclear medicine within a larger context. Our spe- a further description of industrial and manufacturing uses of cialty benefits from an accurate public perception, which this radiation. The applications of radiation described in the book seeks to promote, of the benefits and risks of ionizing chapter on space exploration consist mainly of thermal and radiation. -
Nfap Policy Brief » October 2019
NATIONAL FOUNDATION FOR AMERICAN POLICY NFAP POLICY BRIEF» OCTOBER 2019 IMMIGRANTS AND NOBEL PRIZES : 1901- 2019 EXECUTIVE SUMMARY Immigrants have been awarded 38%, or 36 of 95, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics since 2000.1 In 2019, the U.S. winner of the Nobel Prize in Physics (James Peebles) and one of the two American winners of the Nobel Prize in Chemistry (M. Stanley Whittingham) were immigrants to the United States. This showing by immigrants in 2019 is consistent with recent history and illustrates the contributions of immigrants to America. In 2018, Gérard Mourou, an immigrant from France, won the Nobel Prize in Physics. In 2017, the sole American winner of the Nobel Prize in Chemistry was an immigrant, Joachim Frank, a Columbia University professor born in Germany. Immigrant Rainer Weiss, who was born in Germany and came to the United States as a teenager, was awarded the 2017 Nobel Prize in Physics, sharing it with two other Americans, Kip S. Thorne and Barry C. Barish. In 2016, all 6 American winners of the Nobel Prize in economics and scientific fields were immigrants. Table 1 U.S. Nobel Prize Winners in Chemistry, Medicine and Physics: 2000-2019 Category Immigrant Native-Born Percentage of Immigrant Winners Physics 14 19 42% Chemistry 12 21 36% Medicine 10 19 35% TOTAL 36 59 38% Source: National Foundation for American Policy, Royal Swedish Academy of Sciences, George Mason University Institute for Immigration Research. Between 1901 and 2019, immigrants have been awarded 35%, or 105 of 302, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics. -
Programme 66Th Lindau Nobel Laureate Meeting 26 June – 1 July 2016 MEETING APP TABLE of CONTENTS
Programme 66th Lindau Nobel Laureate Meeting 26 June – 1 July 2016 MEETING APP TABLE OF CONTENTS WANT TO STAY UP TO DATE? Download the Lindau Nobel Laureate Meetings App. Available in Android, iTunes and Windows app stores. (“Lindau Nobel Laureate Meetings”) Scientific Programme page 8 About the Meetings page 32 • Up to date programme info & details • Session abstracts and Supporters poster abstracts page 36 • Ask questions during panel discussions • Participate in polls and Maps page 44 surveys • Interactive maps • Connect to other Good to Know page 52 participants • Social media integration Download the app (Lindau Nobel Laureate Meetings) in Android, iTunes or Windows Phone app stores. Within the app, use the passphrase “darkmatter” to download the guide for the 66th Lindau Nobel Laureate Meeting. 2 3 WELCOME WELCOME The 66th Lindau Nobel Laureate Meeting is characterised by continuity and partners. Many of his strategic initiaves paved the way of the meetings into transition alike: a successful future. The members of the Lindau Council and Foundation are grateful for his years of dedicated service to Lindau’s Mission Education. Back in 1951, the driving intention of the founders Dr. Franz Karl Hein, Pro- fessor Dr. Gustav Wilhelm Parade and Count Lennart Bernadotte was the Every year, we are challenged by the young scientists to further increase vision that this gathering in Lindau, an island very close to its European interaction with Nobel Laureates, to provide more opportunities for young neighbours, could contribute to reconciliation after the second world war, students to present their work, and to enable even more exchange. A new and foster a peaceful and prosperous future. -
Particle Control in a Quantum World
THE NOBEL PRIZE IN PHYSICS 2012 INFORMATION FOR THE PUBLIC Particle control in a quantum world Serge Haroche and David J. Wineland have independently invented and developed ground-breaking methods for measuring and manipulating individual particles while preserving their quantum-mechanical nature, in ways that were previously thought unattainable. Haroche and Wineland have opened the door to a new era of experimentation with quantum physics by demonstrating the direct observation of individual quantum systems without destroying them. Through their ingenious laboratory methods they have managed to measure and control very fragile quan- tum states, enabling their feld of research to take the very frst steps towards building a new type of super fast computer, based on quantum physics. These methods have also led to the construction of extremely precise clocks that could become Figure 1. Nobel Prize awarded for mastering particles. The Laureates have managed to make the future basis for a new standard of time, with more than trapped, individual particles to behave according hundred -fold greater precision than present-day caesium clocks. to the rules of quantum physics. For single particles of light or matter, the laws of classical physics cease to apply and quantum physics takes over. But single particles are not easily isolated from their surrounding environment and they lose their mysterious quantum properties as soon as they interact with the outside world. Thus many seemingly bizarre phenomena predicted by quantum mechanics could not be directly observed, and researchers could only carry out ‘thought experiments’ that might in principle manifest these bizarre phenomena. Both Laureates work in the feld of quantum optics studying the fundamental interaction between light and matter, a feld which has seen considerable progress since the mid-1980s. -
Five Nobel Prizes in Curie's Family
Five Nobel Prizes in Curie’s family JULIA SALAMON Nobel’s history The originator and a founder of the Nobel Prize is Alfred Bernhard Nobel. He was born in Stockholm on the 21 October 1833 and died in San Remo (Italia), 10 December 1896. This scientist and industrialist became famous for inventing dynamite, fake silk, synthetic skin and rubber. For these inventions he was awarded the John Fritz Medal. Alfred Nobel’s testament The first Nobel Prize wasn’t awarded to anyone during Nobel’s lifetime as the organization didn’t yet exist. It was Nobel’s last will to award people who did something for human history. The founder gave all his big fortune to founding this prize – the Nobel Prize in physics, chemistry, physiology or medicine, literature and peace. Nobel’s Foundation came into existence on the 19 June 1900. It was created to award the prizes and dispose of Nobel’s fortune. Excerpt of Nobel’s testament Ja niżej podpisany, Alfred Nobel, oświadczam niniejszym, po długiej rozwadze, iż moja ostatnia wola odnośnie majątku, jest następująca. Wszystkie pozostałe po mnie, możliwe do zrealizowania aktywa, mają być rozdysponowane w sposób następujący: kapitał zostanie przez egzekutorów ulokowany bezpiecznie w papierach, tworzących fundusz, którego procenty każdego roku mają być rozdzielone w formie nagród tym, którzy w roku poprzedzającym przynieśli ludzkości największe korzyści. [...] Offering the prize The first event when the Nobel Prize was awarded took place in the Royal Academy of Music in Stockholm in 1901. The Nobel Peace Prize was received by Jean Henri Dunant – the founder of the Red Cross, and Frédéric Passy. -
COMMITTEE RSC Historical Group Newsletter No. 60 August 2011
COMMITTEE RSC Historical Group Newsletter No. 60 August 2011 Chairman: Prof A T Dronsfield School of Education, Health and Sciences, Contents University of Derby, Derby, DE22 1GB From the Editor 3 [e-mail [email protected]] Royal Society of Chemistry Historical Group News 4 Secretary: Prof W P Griffith Electronic Version of the Newsletter 4 Depositing the RSC Historical Group Newsletter at the British Library 5 Department of Chemistry, Imperial College, Royal Society of Chemistry Historical Group AGM 5 South Kensington, London, SW7 2AZ Minutes of AGM - 19 March 2010 6 [e-mail [email protected]] January 2011 Newsletter – Feedback Marelene Rayner-Canham and Geoff Treasurer; Dr J A Hudson Rayner-Canham 8 Membership Graythwaite, Loweswater, Cockermouth, Members’ Publications 10 Secretary: Cumbria, CA13 0SU Recent publications by Historical Group Committee Members 11 NEWS AND UPDATES 13 [e-mail [email protected]] Partington Prize 13 Newsletter Dr A Simmons Royal Society Exhibition - Visualising Matter: The Graphic Teaching Tools of Editor Epsom Lodge, La Grande Route de St Jean, Chemistry in the Age of Revolution 14 St John, Jersey, JE3 4FL Syracuse University Plastics Collection Goes Online 14 [e-mail [email protected]] USEFUL WEBSITES AND ADDRESSES 15 Newsletter Dr G P Moss Centenary of Marie Curie’s Nobel Prize for Chemistry - Bill Griffith 17 Production & School of Biological and Chemical Sciences, Some Thoughts on Marie Curie, Double Nobel Laureate - Marelene Rayner-Canham Distribution: Queen Mary University of London, and Geoff Rayner-Canham 23 BOOK REVIEW 27 Mile End Road, London E1 4NS Joséf Hurwic, Maria Sklodowska-Curie and Radioactivity- Bill Griffith 27 [e-mail [email protected]] SHORT ESSAYS 28 Committee: Prof J Betteridge (Twickenham, Middlesex) George Kakabadse (1917-2002): Analytical Chemist with a Remarkable History - Dr N G Coley (Open University) Derry W.