Tumors of the Brain Stem, Cerebellum, and Fourth Ventricle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leptomeningeal Dissemination of Pilocytic Astrocytoma Via Hematoma in a Child
Neurosurg Focus 13 (1):Clinical Pearl 2, 2002, Click here to return to Table of Contents Leptomeningeal dissemination of pilocytic astrocytoma via hematoma in a child Case report MASARU KANDA, M.D., HIDENOBU TANAKA, M.D., PH.D., SOJI SHINODA, M.D., PH.D., AND TOSHIO MASUZAWA, M.D., PH.D. Department of Surgical Neurology, Jichi Medical School, Tochigi, Japan A case of recurrent pilocytic astrocytoma with leptomeningeal dissemination (LMD) is described. A cerebellar tumor was diagnosed in a 3-year-old boy, in whom resection was performed. When the boy was 6 years of age, recur- rence was treated with surgery and local radiotherapy. At age 13 years, scoliosis was present, but the patient was asymptomatic. Twelve years after initial surgery LMD was demonstrated in the lumbar spinal region without recur- rence of the original tumor. This tumor also was subtotally removed. During the procedure, a hematoma was observed adjacent to the tumor, but the border was clear. Histological examination of the spinal cord tumor showed features sim- ilar to those of the original tumor. There were no tumor cells in the hematoma. The MIB-1 labeling index indicated no malignant change compared with the previous samples. Radiotherapy was performed after the surgery. The importance of early diagnosis and management of scoliosis is emphasized, and the peculiar pattern of dissemination of the pilo- cytic astrocytoma and its treatment are reviewed. KEY WORDS • pilocytic astrocytoma • leptomeningeal dissemination • MIB-1 labeling index • radiation therapy • scoliosis -
INTRINSIC FACTORS in the ETIOLOGY of NEOPLASMS' It Is
INTRINSIC FACTORS IN THE ETIOLOGY OF NEOPLASMS' CARL V. WELLER, MS., M.D. (From the Department of Pathology, University of Michigan) It is as true as it is trite that the cause of disease is never a single factor. Two elements always enter into etiology. One of these is inherent in the germ plasm of the individual; the other brought to bear upon the organism from beyond the confines of the germinal elements from which it has devel- oped. Better than internal and external, endogenous and exogenous, or con- stitutional and environmental, to designate these two groups of factors, are the terms intrinsic and extrinsic. Practical experience directs us to seek the relative importance of intrinsic and extrinsic factors whenever the causation of disease is studied, and we find that the two ingredients may be combined in every possible proportion. At one end of the series are diseases such as deaf mutism, transmitted as a simple recessive, in which the intrinsic element almost crowds out all other considerations. In the recessively sex-linked hemophilia, again the intrinsic element is so prominent that we see at once the mendelian significance of the process, although the bleeder may not be made known until the extrinsic factor, trauma, opens his blood vessels. The asthenic, dolichomorphic bodily configuration, which marks the phthisical habitus, is a familial character and therefore intrinsic, but it conditions infection by the tubercle bacillus in such a way as to give it serious or even lethal possibilities. When we consider syphilis, we find that the Treponema is no respecter of genetic constitution, yet sex and race may modify the character of the disease. -
Brain Tumors
BRAIN TUMORS What kinds of brain tumors affect pets? Brain tumors occur relatively often in dogs and cats. The most common type of brain tumor is a meningioma, which originates from the layer surrounding the brain, called the meninges. Meningiomas are slow-growing benign tumors that are often present for months to years before clinical signs appear. Other common types in- clude glial cell tumors, which originate in the brain tissue, and choroid plexus tumors, which originate from the tissue in the brain that produces spinal fluid. Tumors in structures around the brain (like nasal tumors, skull tumors, and pituitary tumors) may also com- press the brain. Lymphoma is a type of cancer that can affect multiple parts of the brain and spine. What are the symptoms? Symptoms vary and depend on the size and location of the tumor. Common signs include changes in behavior, circling or pacing, staring into space, getting stuck in corners, and seizures. Other signs can include weakness, lack of alertness, difficulty eating or swallowing, and problems with the “vestibular system,” or system of bal- ance, such as lack of coordination, head tilt, leaning/circling/falling to one side, and abnormal eye movements. How are brain tumors diagnosed? An MRI scan produces an image of the brain that’s more detailed than a CT scan or x-ray and can identify a tumor. Often the appearance of the tumor on MRI suggests the type of tumor (i.e. meningioma vs lymphoma). However, a biopsy of the tumor is required to give a definitive diagnosis. In some cases, spinal fluid is collected to help diagnose lymphoma. -
Central Nervous System
PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES CENTRAL NERVOUS SYSTEM LOW GRADE GLIOMAS CNS Site Group – Low Grade Gliomas Author: Dr. Norm Laperriere 1. INTRODUCTION 3 2. PREVENTION 3 3. SCREENING AND EARLY DETECTION 3 4. DIAGNOSIS AND PATHOLOGY 3 5. MANAGEMENT 4 5.1 MANAGEMENT ALGORITHMS 4 5.2 SURGERY 4 5.3 CHEMOTHERAPY 5 5.4 RADIATION THERAPY 5 6. ONCOLOGY NURSING PRACTICE 6 7. SUPPORTIVE CARE 6 7.1 PATIENT EDUCATION 6 7.2 PSYCHOSOCIAL CARE 6 7.3 SYMPTOM MANAGEMENT 6 7.4 CLINICAL NUTRITION 7 7.5 PALLIATIVE CARE 7 7.6 REHABILITATION 7 8. FOLLOW-UP CARE 7 Last Revision Date – April 2019 2 Low Grade Gliomas 1. Introduction • Grade I gliomas: pilocytic astrocytoma (PA), dysembryoplastic neuroepithelial tumor (DNET), pleomorphic xanthoastrocytoma, (PXA), ganglioglioma • Grade II gliomas: infiltrating astrocytoma, oligodendroglioma, mixed gliomas • annual incidence is approx. 1/100,000 This document is intended for use by members of the Central Nervous System site group of the Princess Margaret Hospital/University Health Network. The guidelines in this document are meant as a guide only, and are not meant to be prescriptive. There exists a multitude of individual factors, prognostic factors and peculiarities in any individual case, and for that reason the ultimate decision as to the management of any individual patient is at the discretion of the staff physician in charge of that particular patient’s care. 2. Prevention • genetic counseling for all NF1 carriers 3. Screening and Early Detection • baseline MRI brain for all newly -
Updates in Molecular Pathology of Central Nervous System Gliomas in Adults
UPDATES IN ONCOLOGY: PART 2 Updates in Molecular Pathology of Central Nervous System Gliomas in Adults MICHAEL PUNSONI, MD; JOHN E. DONAHUE, MD; HEINRICH D. ELINZANO, MD; TIMOTHY KINSELLA, MD 17 19 EN ABSTRACT Epidemiology Central nervous system (CNS) tumors are a heteroge- The incidence of CNS malignancies has been increasing. neous group of neoplasms divided into two broad cate- Most commonly, CNS tumors arise from glial cells, partic- gories, glial and non-glial. Non-glial tumors are derived ularly astrocytes and oligodendrocytes. Gliomas account from such diverse structures as the pineal gland, menin- for approximately 77% of primary malignant brain tumors ges, germ cells, and hematopoietic cells, as well as metas- (3). Most patients present between the fifth and seventh tases. Primary glial neoplasms, or those which originate decade of life. High-grade tumors are more common than from astrocytes, oligodendrocytes, or ependymal cells, low-grade and present a high risk of morbidity and mortal- include astrocytomas, oligodendrogliomas, ependymo- ity. The World Health Organization (WHO) in 2000 formu- mas, and mixed gliomas. Each entity has a unique mor- lated a classification system based on histologic findings phology and pattern of biologic behavior which portends that is used to stratify brain tumors into prognostic grades. a distinct prognosis and outcome. Individual outcomes High-grade gliomas (WHO grade III and IV) are most com- show some variability based on tumor location and age of monly seen in middle-aged to older adults, while grade II symptom onset; however, the underlying aggressiveness astrocytomas mainly affect younger adults. Management for of the tumor often dictates the time course of the disease. -
Central Nervous System Tumors General ~1% of Tumors in Adults, but ~25% of Malignancies in Children (Only 2Nd to Leukemia)
Last updated: 3/4/2021 Prepared by Kurt Schaberg Central Nervous System Tumors General ~1% of tumors in adults, but ~25% of malignancies in children (only 2nd to leukemia). Significant increase in incidence in primary brain tumors in elderly. Metastases to the brain far outnumber primary CNS tumors→ multiple cerebral tumors. One can develop a very good DDX by just location, age, and imaging. Differential Diagnosis by clinical information: Location Pediatric/Young Adult Older Adult Cerebral/ Ganglioglioma, DNET, PXA, Glioblastoma Multiforme (GBM) Supratentorial Ependymoma, AT/RT Infiltrating Astrocytoma (grades II-III), CNS Embryonal Neoplasms Oligodendroglioma, Metastases, Lymphoma, Infection Cerebellar/ PA, Medulloblastoma, Ependymoma, Metastases, Hemangioblastoma, Infratentorial/ Choroid plexus papilloma, AT/RT Choroid plexus papilloma, Subependymoma Fourth ventricle Brainstem PA, DMG Astrocytoma, Glioblastoma, DMG, Metastases Spinal cord Ependymoma, PA, DMG, MPE, Drop Ependymoma, Astrocytoma, DMG, MPE (filum), (intramedullary) metastases Paraganglioma (filum), Spinal cord Meningioma, Schwannoma, Schwannoma, Meningioma, (extramedullary) Metastases, Melanocytoma/melanoma Melanocytoma/melanoma, MPNST Spinal cord Bone tumor, Meningioma, Abscess, Herniated disk, Lymphoma, Abscess, (extradural) Vascular malformation, Metastases, Extra-axial/Dural/ Leukemia/lymphoma, Ewing Sarcoma, Meningioma, SFT, Metastases, Lymphoma, Leptomeningeal Rhabdomyosarcoma, Disseminated medulloblastoma, DLGNT, Sellar/infundibular Pituitary adenoma, Pituitary adenoma, -
797 Circulating Tumor DNA and Circulating Tumor Cells for Cancer
Medical Policy Circulating Tumor DNA and Circulating Tumor Cells for Cancer Management (Liquid Biopsy) Table of Contents • Policy: Commercial • Coding Information • Information Pertaining to All Policies • Policy: Medicare • Description • References • Authorization Information • Policy History • Endnotes Policy Number: 797 BCBSA Reference Number: 2.04.141 Related Policies Biomarkers for the Diagnosis and Cancer Risk Assessment of Prostate Cancer, #336 Policy1 Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Plasma-based comprehensive somatic genomic profiling testing (CGP) using Guardant360® for patients with Stage IIIB/IV non-small cell lung cancer (NSCLC) is considered MEDICALLY NECESSARY when the following criteria have been met: Diagnosis: • When tissue-based CGP is infeasible (i.e., quantity not sufficient for tissue-based CGP or invasive biopsy is medically contraindicated), AND • When prior results for ALL of the following tests are not available: o EGFR single nucleotide variants (SNVs) and insertions and deletions (indels) o ALK and ROS1 rearrangements o PDL1 expression. Progression: • Patients progressing on or after chemotherapy or immunotherapy who have never been tested for EGFR SNVs and indels, and ALK and ROS1 rearrangements, and for whom tissue-based CGP is infeasible (i.e., quantity not sufficient for tissue-based CGP), OR • For patients progressing on EGFR tyrosine kinase inhibitors (TKIs). If no genetic alteration is detected by Guardant360®, or if circulating tumor DNA (ctDNA) is insufficient/not detected, tissue-based genotyping should be considered. Other plasma-based CGP tests are considered INVESTIGATIONAL. CGP and the use of circulating tumor DNA is considered INVESTIGATIONAL for all other indications. 1 The use of circulating tumor cells is considered INVESTIGATIONAL for all indications. -
Neuro-Oncology
Neuro-Oncology Neuro-Oncology 17:iv1–iv62, 2015. doi:10.1093/neuonc/nov189 CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012 Quinn T. Ostrom M.A., M.P.H.1,2*, Haley Gittleman M.S.1,2*, Jordonna Fulop R.N.1, Max Liu3, Rachel Blanda4, Courtney Kromer B.A.5, Yingli Wolinsky Ph.D., M.B.A.1,2, Carol Kruchko B.A.2, and Jill S. Barnholtz-Sloan Ph.D.1,2 1Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH USA 2Central Brain Tumor Registry of the United States, Hinsdale, IL USA 3Solon High School, Solon, OH USA 4Georgetown University, Washington D.C. USA 5Case Western Reserve University School of Medicine, Cleveland, OH USA *Contributed equally to this Report. Introduction for collection of central (state) cancer data as mandated in 1992 by Public Law 102-515, the Cancer Registries Amendment The objective of the CBTRUS Statistical Report: Primary Brain and Act.2 This mandate was expanded to include non-malignant Central Nervous System Tumors Diagnosed in the United States brain tumors diagnosed in 2004 and later with the 2002 in 2008-2012 is to provide a comprehensive summary of the passage of Public Law 107–260.3 CBTRUS researchers combine current descriptive epidemiology of primary brain and central the NPCR data with data from the SEER program4 of the NCI, nervous system (CNS) tumors in the United States (US) popula- which was established for national cancer surveillance in the tion. CBTRUS obtained the latest available data on all newly early 1970s. -
Connections Between Warburg's and Szentgyorgyi's Approach About The
Research iMedPub Journals Journal of Neoplasm 2017 http://www.imedpub.com/ ISSN 2576-3903 Vol.1 No.2:8 DOI: 10.217672576-3903.100008 Connections between Warburg’s and Szentgyorgyi’s Approach about the Causes of Cancer Szigeti GP1, Szasz O2 and Hegyi G3 1Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Hungary 2Department of Biotechnics, St. Istvan University, Hungary 3Department of Complementary and Alternative Medicine, University of Pecs, Hungary Corresponding author: Gabriella Hegyi, Department of Complementary and Alternative Medicine, University of Pecs, Hungary, Tel: +36 30 922-5347; E-mail: [email protected] Rec date: November 30, 2016; Acc date: December 26, 2016; Pub date: December 30, 2016 Citation: Szigeti GP, Szasz O, Hegyi G. Connections Between Warburg’s and Szentgyorgyi’s Approach About Causes of Cancer. J Neoplasm. 2017, 1: 2. to the environmental, diet and habit origins of malignant Abstract diseases [21-23]. Most widely, cancer is believed to be an abnormal tissue Numerous theories and hypotheses are published about triggered by a gene mutation. However, the proto-oncogene the causes of cancer and its hallmarks. Two remarkable and the oncogene appear not only in cancerous cases [24], but principles were established and debated for a long time. with pregnancy [25], with embryogenesis [26,27], with the The first is the Warburg-effect, which based on healing of wounds [28] and with the synthesis of growth mitochondrial dysfunction, connected to the intensive factors [29]. Oncogenes show a great variety of anti-apoptotic metabolic activity of the malignancy. The other is the functions with the cells taking part in the wound-healing [30]. -
Injury and Cancer
Case Western Reserve Law Review Volume 5 Issue 2 Article 4 1954 Injury and Cancer Lester Adelson Follow this and additional works at: https://scholarlycommons.law.case.edu/caselrev Part of the Law Commons Recommended Citation Lester Adelson, Injury and Cancer, 5 W. Rsrv. L. Rev. 150 (1954) Available at: https://scholarlycommons.law.case.edu/caselrev/vol5/iss2/4 This Article is brought to you for free and open access by the Student Journals at Case Western Reserve University School of Law Scholarly Commons. It has been accepted for inclusion in Case Western Reserve Law Review by an authorized administrator of Case Western Reserve University School of Law Scholarly Commons. [Winter Injury and Cancer by Lester Adelson, M.D. WITH LEGAL ANNOTATIONS BY OLIVER SCHROEDER, JR.* INTRODUCTION THE WORD "cancer" is one which is charged with emotion and fear, carrying with it implications of prolonged disability and slow, certain and painful death.' In considering and discussing the subject of cancer, diffi- culties frequently arise, not because not enough is known, but because so much is known that-is incorrect and untrue. A vast fund of misinformation and false information mis- leads the unwary stranger THE AUTHOR (A.B., 1935, Harvard Univer- and the uncritical observer. sity; M.D., 1939, Tufts College Medical School) is Chief Deputy Coroner and Patholo- Cancer is the second gist at the Coroner's Office, Cuyahoga County, leading cause of death, and Ohio, and Assistant Professor of Legal Medi- problems which arise in cine at the School of Medicine of Western Reserve University. connection with it are seen frequently. -
Differentiation Between Pilocytic Astrocytoma and Glioblastoma: a Decision Tree Model Using Contrast-Enhanced Magnetic Resonance
European Radiology (2019) 29:3968–3975 https://doi.org/10.1007/s00330-018-5706-6 ONCOLOGY Differentiation between pilocytic astrocytoma and glioblastoma: a decision tree model using contrast-enhanced magnetic resonance imaging-derived quantitative radiomic features Fei Dong1 & Qian Li1 & Duo Xu1 & Wenji Xiu2 & Qiang Zeng3 & Xiuliang Zhu1 & Fangfang Xu1 & Biao Jiang1 & Minming Zhang1 Received: 13 March 2018 /Revised: 8 July 2018 /Accepted: 6 August 2018 /Published online: 12 November 2018 # European Society of Radiology 2018 Abstract Objective To differentiate brain pilocytic astrocytoma (PA) from glioblastoma (GBM) using contrast-enhanced mag- netic resonance imaging (MRI) quantitative radiomic features by a decision tree model. Methods Sixty-six patients from two centres (PA, n = 31; GBM, n = 35) were randomly divided into training and validation data sets (about 2:1). Quantitative radiomic features of the tumours were extracted from contrast-enhanced MR images. A subset of features was selected by feature stability and Boruta algorithm. The selected features were used to build a decision tree model. Predictive accuracy, sensitivity and specificity were used to assess model performance. The classification outcome of the model was combined with tumour location, age and gender features, and multivariable logistic regression analysis and permutation test using the entire data set were performed to further evaluate the decision tree model. Results A total of 271 radiomic features were successfully extracted for each tumour. Twelve features were selected as input variables to build the decision tree model. Two features S(1, -1) Entropy and S(2, -2) SumAverg were finally included in the model. The model showed an accuracy, sensitivity and specificity of 0.87, 0.90 and 0.83 for the training data set and 0.86, 0.80 and 0.91 for the validation data set. -
Telovelar Approach to the Fourth Ventricle: Microsurgical Anatomy
J Neurosurg 92:812–823, 2000 Telovelar approach to the fourth ventricle: microsurgical anatomy ANTONIO C. M. MUSSI, M.D., AND ALBERT L. RHOTON, JR., M.D. Department of Neurological Surgery, University of Florida, Gainesville, Florida Object. In the past, access to the fourth ventricle was obtained by splitting the vermis or removing part of the cere- bellum. The purpose of this study was to examine the access to the fourth ventricle achieved by opening the tela cho- roidea and inferior medullary velum, the two thin sheets of tissue that form the lower half of the roof of the fourth ven- tricle, without incising or removing part of the cerebellum. Methods. Fifty formalin-fixed specimens, in which the arteries were perfused with red silicone and the veins with blue silicone, provided the material for this study. The dissections were performed in a stepwise manner to simulate the exposure that can be obtained by retracting the cerebellar tonsils and opening the tela choroidea and inferior medullary velum. Conclusions. Gently displacing the tonsils laterally exposes both the tela choroidea and the inferior medullary velum. Opening the tela provides access to the floor and body of the ventricle from the aqueduct to the obex. The additional opening of the velum provides access to the superior half of the roof of the ventricle, the fastigium, and the superolater- al recess. Elevating the tonsillar surface away from the posterolateral medulla exposes the tela, which covers the later- al recess, and opening this tela exposes the structure forming