Mechanisms of Carcinogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Carcinogenesis part 2. mechanisms of carcinogenesis chapter 11. Mechanisms of carcinogenesis: from initiation and promotion to the hallmarks Bernard W. Stewart PART 2 CH A PTER 11 Introduction malignancy by describing a tumour The types of biological agents and of as “an abnormal mass of tissue, the radiation now recognized by IARC For many decades, a corollary to growth of which exceeds and is un- as carcinogenic to humans (Group 1) the contemporary understanding of coordinated with that of the surround- are few compared with the number the nature of cancer and of carcino- ing tissue, and that continues to grow of chemicals in this category (IARC genesis has been the recognition of in the same excessive manner after 2012a, b, c, d, e, f); there is a much causative agents. Since the 1950s, cessation of the stimulus that caused larger number of chemicals for which many agents that contribute to the it”. According to the same textbook, at least some evidence of carcino- development of cancer have been development of tumours of the skin, genicity is available (see Volumes categorized as initiators or promot- the alimentary canal, or the respira- 1–105 of the IARC Monographs, ers, on the basis of studies of chem- tory tract was to be expected among available from http://publications. ical carcinogenesis in mouse skin individuals exposed “to various iarc.fr). (Berenblum and Shubik, 1947). noxious agents in the environment”. Research has established how Cancer was described with ref- Causation of cancer in humans or many carcinogenic chemicals cause, erence to causative agents. Thus, animals by certain chemicals, radia- or are likely to cause, malignant a 1970s pathology text (Cappell tion, and biological agents was rec- transformation, but the biological and Anderson, 1974) introduced ognized by early in the 20th century. processes involved are diverse, and Part 2 • Chapter 11. Mechanisms of carcinogenesis: from initiation and promotion to the hallmarks 93 Table 11.1. A selection of proposals for the categorization of chemical carcinogensa Mode of action Exposure context Chemistry Human relevance Agent type of bioassay data Genotoxic Tobacco smoke PAHs DNA binding Atmospheric pollutants Direct-acting Alcoholic N-nitroso PPARα activation Pesticides beverages compounds Pro-carcinogen Occupation Aromatic amines α2u-Globulin Organic solvents nephropathy Inorganic carcinogen Pollution Halogenated Urinary tract calculi Endocrine disruptors organic compounds Non-genotoxic Diet Naturally Disinfection occurring by-products compounds Solid-state carcinogen Pharmaceutical Inorganic Pharmacological drugs compounds steroids Hormone Exogenous hormones Immunosuppressant Promoter PAHs, polycyclic aromatic hydrocarbons; PPAR, peroxisome proliferator-activated receptor. a Knowledge about chemical carcinogens is presented from a variety of perspectives apart from that of mechanism of action. The listings indicate those used in particular publications (e.g. Searle, 1984; Tomatis et al., 1990; Vainio et al., 1992; Vainio and Hietanen, 2003; Hsu and Stedeford, 2010) as ways of ordering data, as indicated by chapter headings in many cases, and are not necessarily comprehensive. Categories shown in bold involve or include at least one Volume 100 (Group 1) agent. there is no generally accepted mech- categorization of chemical carcin- “hallmark” or “hallmarks” have been anistic basis for classifying chemi- ogens on the basis of the organ af- published. These papers typically cal carcinogens (Loeb and Harris, fected (Warshawsky and Landolph, describe signal transduction path- 2008), beyond categorization ac- 2006). ways and their therapeutic implica- cording to genotoxicity (Weisburger Currently, the most widely rec- tions. Although the characterization and Williams, 1981). There is no ognized description of the nature of by Hanahan and Weinberg (2011) single comprehensive basis for cat- cancer is that presented by Hanahan of the hallmarks of cancer did not egorization; chemical carcinogens and Weinberg in two reviews – pub- refer to chemical carcinogens or are sometimes ordered according lished more than a decade apart – causative agents in general, recent- to the context in which information is that identify the “hallmarks” of can- ly the hallmarks have been used to presented, with genotoxicity ordered cer (Hanahan and Weinberg, 2000, characterize chemical carcinogens according to mutational signatures, 2011). These papers have been so (Kleinstreuer et al., 2013). or agents categorized in relation to influential that others refer to “the These considerations give rise to differing classes of receptors. There hallmarks” without further qualifica- two questions: (i) whether previous- have been many proposals for the tion, for example in the title of a re- ly used mechanism-based descrip- categorization of chemical carcin- cent perspective on tumour metabol- tions of chemical carcinogens may ogens according to various crite- ism (Cantor and Sabatini, 2012). be recast in relation to the hallmarks; ria. A selection of these is shown Since 2000, about 200 cancer re- and (ii) whether, and to what extent, in Table 11.1; others include the search papers with a title including the hallmarks provide opportunities 94 to characterize agents apart from Morphological and genetic biological macromolecules had been currently known carcinogens as changes variously demonstrated over dec- contributing to the development of ades, carcinogen adducts in DNA cancer. Both of these matters are Within 20 years of the publica- were crucial. addressed in this chapter. tions cited above, the identification Alkylation of DNA by N-nitroso of multistage carcinogenesis with compounds was shown by Magee Multistage carcinogenesis particular carcinogens or other exog- and Farber (1962), with tumorigene- enous agents had become irrelevant sis attributable to the pro-mutagenic Exogenous agents to an understanding of cancer de- O6-methylguanine product, which The widely accepted paradigm of velopment. Over the same decades, mispairs with thymine. In rats, acti- carcinogenesis as involving a mul- the context in which carcinogenesis vation of H-Ras in mammary gland tistage process is generally recog- was best understood changed from tumours induced by N-methyl-N′- nized to have been developed from rodents to humans. Critical to this nitrosourea was correlated with the two-stage model of carcino- transition was the identification of H-Ras mutation at codons 12, 13, genesis in mouse skin (Berenblum multistage carcinogenesis with alter- and 61 (Sukumar et al., 1983). and Shubik, 1947), which typically ations in gene structure or expres- However, although this insight had involves a polycyclic aromatic hydro- sion rather than with the impact of been gained, it was clear that the eti- exogenous agents. carbon (PAH) and a phorbol ester ology of some types of cancer, such PART 2 (identified as the active agent in the A key development was the as breast cancer in humans, did not CH A PTER 11 irritant croton oil). Because tumor- correlation by Vogelstein et al. (1988) primarily involve alkylating agents. igenesis in animals is amenable to of morphological change during the Thus, in human cancer RAS activa- histological examination at all stag- development of colon cancer in hu- tion is a relevant genetic change in es, morphological criteria can be mans with particular genetic change. tumour tissue, without reference to used to characterize the process. The concept was applicable to all exogenous agents (Bos et al., 1987). With the production of malignant tu- tumour types. Thus, in a diagram il- Although the concept of multi- mours as the end-point, two-stage or lustrating multistage carcinogenesis stage carcinogenesis was estab- multistage carcinogenesis was read- with respect to human lung cancer, lished through the use of exogenous ily described in various organ sites in Harris (1992) made no reference to agents that target particular organ animals, including the liver and the any particular exogenous agents as sites in animals, by 1990 multistage bladder (Slaga et al., 1978). mediating specific stages in tumori- carcinogenesis was primarily iden- Thus, in relation to hepatocarcino- genesis, and showed the transitions tified with altered structure or ex- genesis, agents such as phenobarbi- between stages as being mediated pression of genes associated with tal, dichlorodiphenyltrichloroethane, by alterations in the structure or ex- cell proliferation, specifically as de- polychlorinated biphenyls, butylated pression of oncogenes and tumour scribed in human tumours. However, hydroxytoluene, and estradiol ben- suppressor genes. the focus of that research has not zoate were identified as promoters Oncogenes and tumour suppres- involved the specification of genetic (Dohi et al., 1996). The relevant sor genes mediate altered prolifera- change over time in a manner that experimental observations, in addi- tive activity in a positive and nega- might account for the emergence of a tion to indicating the possible risk to tive sense, respectively. Classically, metastatic cell population from with- humans presented by the relevant increased proliferative activity due in normal tissue. Rather, the relevant chemicals, also led to the contempo- to oncogene expression accounted research has involved the identifica- rary understanding of the nature of for the transformation of NIH 3T3 tion of disordered signal transduction malignancy itself. That understand- cells by DNA isolated from tumours pathways, with a view to developing
Recommended publications
  • When Cancer Spreads to the Bone
    When Cancer Spreads to the Bone John U. (pictured) was diagnosed with kidney cancer which metastasized to the bone over 10 years ago. Since then, he has had over a dozen procedures to stabilize his bones. Cancer occurs when cells in your body their cancer has spread to their bones. start growing and dividing faster than is booklet explains: normal. At rst, these cells may form into • Why bone metastases occur small clumps or tumors. But they can • How they are treated also spread to other parts of the body. When cancer spreads, it is said to have • What patients with bone metastases can “metastasized.” do to prevent broken bones and fractures It is possible for many types of cancer to spread to the bones. People with cancer can live for years after they have been told What is Bone? BONE ANATOMY Many people don’t spend much time thinking about their bones. But there’s a lot going on Trabecular Bone inside them. Bone is living, growing tissue, Blood vessels in bone marrow made up of proteins and minerals. Your bones have two layers. The outer layer— called cortical bone— is very thick. The inner layer—the trabecular (truh-BEH-kyoo-ler) bone—is very spongy. Inside the spongy bone is your bone marrow. It contains stem cells that can develop into white blood cells, red blood cells, and platelets. Cortical Bone The cells that make up the bones are always changing. There are three types of cells that are found only in bone: Osteoclasts (OS-tee-oh-klast), which break down the bone LLC, US Govt.
    [Show full text]
  • Medical Oncology and Breast Cancer
    The Breast Center Smilow Cancer Hospital 20 York Street, North Pavilion New Haven, CT 06510 Phone: (203) 200-2328 Fax: (203) 200-2075 MEDICAL ONCOLOGY Treatment for breast cancer is multidisciplinary. The primary physicians with whom you may meet as part of your care are the medical oncologist, the breast surgeon, and often the radiation oncologist. A list of these specialty physicians will be provided to you. Each provider works with a team of caregivers to ensure that every patient receives high quality, personalized, breast cancer care. The medical oncologist specializes in “systemic therapy”, or medications that treat the whole body. For women with early stage breast cancer, systemic therapy is often recommended to provide the best opportunity to prevent breast cancer from returning. SYSTEMIC THERAPY Depending on the specific characteristics of your cancer, your medical oncologist may prescribe systemic therapy. Systemic therapy can be hormone pills, IV chemotherapy, antibody therapy (also called “immunotherapy”), and oral chemotherapy; sometimes patients receive more than one type of systemic therapy. Systemic therapy can happen before surgery (called “neoadjuvant therapy”) or after surgery (“adjuvant therapy”). If appropriate, your breast surgeon and medical oncologist will discuss the benefits of neoadjuvant and adjuvant therapy with you. As a National Comprehensive Cancer Network (NCCN) Member Institution, we are dedicated to following the treatment guidelines that have been shown to be most effective. We also have a variety of clinical trials that will help us find better ways to treat breast cancer. Your medical oncologist will recommend what treatment types and regimens are best for you. The information used to make these decisions include: the location of the cancer, the size of the cancer, the type of cancer, whether the cancer is invasive, the grade of the cancer (a measure of its aggressiveness), prognostic factors such as hormone receptors and HER2 status, and lymph node involvement.
    [Show full text]
  • Exposure to Carcinogens and Work-Related Cancer: a Review of Assessment Methods
    European Agency for Safety and Health at Work ISSN: 1831-9343 Exposure to carcinogens and work-related cancer: A review of assessment methods European Risk Observatory Report Exposure to carcinogens and work-related cancer: A review of assessment measures Authors: Dr Lothar Lißner, Kooperationsstelle Hamburg IFE GmbH Mr Klaus Kuhl (task leader), Kooperationsstelle Hamburg IFE GmbH Dr Timo Kauppinen, Finnish Institute of Occupational Health Ms Sanni Uuksulainen, Finnish Institute of Occupational Health Cross-checker: Professor Ulla B. Vogel from the National Working Environment Research Centre in Denmark Project management: Dr Elke Schneider - European Agency for Safety and Health at Work (EU-OSHA) Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers, or these calls may be billed. More information on the European Union is available on the Internet ( 48TU http://europa.euU48T). Cataloguing data can be found on the cover of this publication. Luxembourg: Publications Office of the European Union, 2014 ISBN: 978-92-9240-500-7 doi: 10.2802/33336 Cover pictures: (clockwise): Anthony Jay Villalon (Fotolia); ©Roman Milert (Fotolia); ©Simona Palijanskaite; ©Kari Rissa © European Agency for Safety and Health at Work, 2014 Reproduction is authorised provided the source is acknowledged. European Agency for Safety and Health at Work – EU-OSHA 1 Exposure to carcinogens and work-related cancer:
    [Show full text]
  • Carcinogens Are Mutagens
    -Proc. Nat. Acad. Sci. USA Vol. 70, No. 8, pp. 2281-2285, August 1973 Carcinogens are Mutagens: A Simple Test System Combining Liver Homogenates for Activation and Bacteria for Detection (frameshift mutagens/aflatoxin/benzo(a)pyrene/acetylaminofluorene) BRUCE N. AMES, WILLIAM E. DURSTON, EDITH YAMASAKI, AND FRANK D. LEE Biochemistry Department, University of California, Berkeley, Calif. 94720 Contributed by Bruce N. Ames, May 14, 1973 ABSTRACT 18 Carcinogens, including aflatoxin Bi, methylsulfoxide (Me2SO), spectrophotometric grade, was ob- benzo(a)pyrene, acetylaminofluorene, benzidine, and di- tained from Schwarz/Mann, sodium phenobarbital from methylamino-trans-stilbene, are shown to be activated by liver homogenates to form potent frameshift mutagens. Mallinckrodt, aflatoxin B1 from Calbiochem, and 3-methyl- We believe that these carcinogens have in common a ring cholanthrene from Eastman; 7,12-dimethylbenz(a)anthracene system sufficiently planar for a stacking interaction with was a gift of P. L. Grover. Schuchardt (Munich) was the DNA base pairs and a part of the molecule capable of being source for the other carcinogens. metabolized to a reactive group: these structural features are discussed in terms of the theory of frameshift muta- Bacterial Strains used are mutants of S. typhimurium LT-2 genesis. We propose that these carcinogens, and many have been discussed in detail others that are mutagens, cause cancer by somatic muta- and (2). tion. A simple, inexpensive, and extremely sensitive test for Source Liver. Male rats (Sprague-Dawley/Bio-1 strain, detection of carcinogens as mutagens is described. It con- of sists of the use of a rat or human liver homogenate for Horton Animal Laboratories) were maintained on Purina carcinogen activation (thus supplying mammalian metab- laboratory chow.
    [Show full text]
  • About Ovarian Cancer Overview and Types
    cancer.org | 1.800.227.2345 About Ovarian Cancer Overview and Types If you have been diagnosed with ovarian cancer or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is Ovarian Cancer? Research and Statistics See the latest estimates for new cases of ovarian cancer and deaths in the US and what research is currently being done. ● Key Statistics for Ovarian Cancer ● What's New in Ovarian Cancer Research? What Is Ovarian Cancer? Cancer starts when cells in the body begin to grow out of control. Cells in nearly any part of the body can become cancer and can spread. To learn more about how cancers start and spread, see What Is Cancer?1 Ovarian cancers were previously believed to begin only in the ovaries, but recent evidence suggests that many ovarian cancers may actually start in the cells in the far (distal) end of the fallopian tubes. 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 What are the ovaries? Ovaries are reproductive glands found only in females (women). The ovaries produce eggs (ova) for reproduction. The eggs travel from the ovaries through the fallopian tubes into the uterus where the fertilized egg settles in and develops into a fetus. The ovaries are also the main source of the female hormones estrogen and progesterone. One ovary is on each side of the uterus. The ovaries are mainly made up of 3 kinds of cells. Each type of cell can develop into a different type of tumor: ● Epithelial tumors start from the cells that cover the outer surface of the ovary.
    [Show full text]
  • The Interactions of DNA Repair, Telomere Homeostasis, and P53 Mutational Status in Solid Cancers: Risk, Prognosis, and Prediction
    cancers Review The Interactions of DNA Repair, Telomere Homeostasis, and p53 Mutational Status in Solid Cancers: Risk, Prognosis, and Prediction Pavel Vodicka 1,2,3, Ladislav Andera 4,5, Alena Opattova 1,2,3,† and Ludmila Vodickova 1,2,3,*,† 1 Institute of Experimental Medicine, AS CR, 142 20 Prague, Czech Republic; [email protected] (P.V.); [email protected] (A.O.) 2 First Medical Faculty, Charles University, 121 08 Prague, Czech Republic 3 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic 4 Institute of Biotechnology, AS CR, 252 50 Vestec, Czech Republic; [email protected] 5 Institute of Molecular Genetics, AS CR, 142 20 Prague, Czech Republic * Correspondence: [email protected] † These authors contribured eaqually to this paper. Simple Summary: p53 is a nuclear transcription factor with a pro-apoptotic function. Somatic mutations in this gene represent one of the most critical events in human carcinogenesis. The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and alteration of telomere homeostasis constitute the hallmarks of malignant diseases. The main aim of our review was to accentuate a complex comprehension of the interactions between fundamental players in carcinogenesis of solid malignancies such as DNA damage response, telomere homeostasis and TP53. Abstract: The disruption of genomic integrity due to the accumulation of various kinds of DNA Citation: Vodicka, P.; Andera, L.; Opattova, A.; Vodickova, L. The damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malig- Interactions of DNA Repair, Telomere nant diseases.
    [Show full text]
  • INTRINSIC FACTORS in the ETIOLOGY of NEOPLASMS' It Is
    INTRINSIC FACTORS IN THE ETIOLOGY OF NEOPLASMS' CARL V. WELLER, MS., M.D. (From the Department of Pathology, University of Michigan) It is as true as it is trite that the cause of disease is never a single factor. Two elements always enter into etiology. One of these is inherent in the germ plasm of the individual; the other brought to bear upon the organism from beyond the confines of the germinal elements from which it has devel- oped. Better than internal and external, endogenous and exogenous, or con- stitutional and environmental, to designate these two groups of factors, are the terms intrinsic and extrinsic. Practical experience directs us to seek the relative importance of intrinsic and extrinsic factors whenever the causation of disease is studied, and we find that the two ingredients may be combined in every possible proportion. At one end of the series are diseases such as deaf mutism, transmitted as a simple recessive, in which the intrinsic element almost crowds out all other considerations. In the recessively sex-linked hemophilia, again the intrinsic element is so prominent that we see at once the mendelian significance of the process, although the bleeder may not be made known until the extrinsic factor, trauma, opens his blood vessels. The asthenic, dolichomorphic bodily configuration, which marks the phthisical habitus, is a familial character and therefore intrinsic, but it conditions infection by the tubercle bacillus in such a way as to give it serious or even lethal possibilities. When we consider syphilis, we find that the Treponema is no respecter of genetic constitution, yet sex and race may modify the character of the disease.
    [Show full text]
  • DCIS): Pathological Features, Differential Diagnosis, Prognostic Factors and Specimen Evaluation
    Modern Pathology (2010) 23, S8–S13 S8 & 2010 USCAP, Inc. All rights reserved 0893-3952/10 $32.00 Ductal carcinoma in situ (DCIS): pathological features, differential diagnosis, prognostic factors and specimen evaluation Sarah E Pinder Breast Research Pathology, Research Oncology, Division of Cancer Studies, King’s College London, Guy’s Hospital, London, UK Ductal carcinoma in situ (DCIS) is a heterogeneous, unicentric precursor of invasive breast cancer, which is frequently identified through mammographic breast screening programs. The lesion can cause particular difficulties for specimen handling in the laboratory and typically requires even more diligent macroscopic assessment and sampling than invasive disease. Pitfalls and tips for macroscopic handling, microscopic diagnosis and assessment, including determination of prognostic factors, such as cytonuclear grade, presence or absence of necrosis, size of the lesion and distance to margins are described. All should be routinely included in histopathology reports of this disease; in order not to omit these clinically relevant details, synoptic reports, such as that produced by the College of American Pathologists are recommended. No biomarkers have been convincingly shown, and validated, to predict the behavior of DCIS till date. Modern Pathology (2010) 23, S8–S13; doi:10.1038/modpathol.2010.40 Keywords: ductal carcinoma in situ (DCIS); breast cancer; histopathology; prognostic factors Ductal carcinoma in situ (DCIS) is a malignant, lesions, a good cosmetic result can be obtained by clonal proliferation of cells growing within the wide local excision. Recurrence of DCIS generally basement membrane-bound structures of the breast occurs at the site of previous excision and it is and with no evidence of invasion into surrounding therefore better regarded as residual disease, as stroma.
    [Show full text]
  • Tasmanian Devils' Transmissible Cancer
    Tasmanian devils’ transmissible cancer: Izarbe Aísa Marín Genetics Bachelor’s Degree What is the future? Final Project | June 2017 Introduction Devil Facial Tumor Disease 1Why is Tasmanian devils’ cancer incidence so high? 2Introduction to transmissible cancers Carcinogenesis is thought to occur via Peto’s Paradox represents the lack of accumulation of mutations and mutation correlation between cancer prevalence rates depend on cell number, which and body size or lifespan and it can be Primary Mode of Lack of Capacity for correlates with body size and lifespan. useful to explore cases that are far tumor’s origin transmission allorecognition infinite growth Then, large and long-lived animals from what is expected. Tasmanian should have more cancers than smaller devils suffer from Devil Facial Tumor and shorter-lived ones, due to increased Disease (DFTD), a lethal transmissible The ancestral type of DTDF is thought to be derived from a Schwann cell (clonal number of cell divisions. cancer that is threatening the species origin) and it is transmitted by biting during mating or feeding interactions. to extinction. (2) (1) y = 0,0815 - 0,0061x [y=%Tumors; x=Log(Mass[x]*LifeSpan[y])] 10x DFTD was first reported in Mount William National Park, northeastern Tasmania, in 1996. In 20 years, the disease has spread to more than 85% Forestier of wild Tasmanian devil Peninsula populations, causing severe declines. Immunology of DFTD 3Why devils immune system do not recognize DFTD? (3) Deficiency of devil Marsupials’ immune system is different immune system from, rather than inferior to mammals’ immune system. Immunological Low genetic Slower immune responses tolerance diversity facilitate early transmission events.
    [Show full text]
  • Ductal Carcinoma in Situ Management Update
    Breast series • CLINICAL PRACTICE Ductal carcinoma in situ Management update Kirsty Stuart, BSc (Med), MBBS, FRANZCR, is a radiation oncologist, NSW Breast Cancer Institute, Westmead Hospital, New South Wales. John Boyages, MBBS, FRANZCR, PhD, is Associate Professor, University of Sydney, and Executive Director and radiation oncologist, NSW Breast Cancer Institute, Westmead Hospital, New South Wales. Meagan Brennan, BMed, FRACGP, DFM, FASBP, is a breast physician, NSW Breast Cancer Institute, Westmead Hospital, New South Wales. [email protected] Owen Ung, MBBS, FRACS, is Clinical Associate Professor, University of Sydney, and Clinical Services Director and breast and endocrine surgeon, NSW Breast Cancer Institute, Westmead Hospital, New South Wales. This ninth article in our series on breast disease will focus on ductal carcinoma in situ of the breast – a proliferation of potentially malignant cells within the lumen of the ductal system. An overview of the management of ductal carcinoma in situ including pathology, clinical presentation and relevant investigations is presented, and the roles and dilemmas of surgery, radiotherapy and endocrine therapy are discussed. The incidence of ductal carcinoma in situ that may present as a single grade or a inflammation. Myoepithelial stains are used (DCIS) of the breast has risen over the past combination of high, intermediate or low to help identify a breach in the duct lining. 15 years. This is in part due to the introduction grades. There are various histological patterns However, if there is any doubt, a second of screening mammography. The diagnosis of DCIS and more than one of these may be pathological opinion may be worthwhile.
    [Show full text]
  • Mitochondrial Metabolism and Cancer
    Cell Research (2018) 28:265-280. REVIEW www.nature.com/cr Mitochondrial metabolism and cancer Paolo Ettore Porporato1, *, Nicoletta Filigheddu2, *, José Manuel Bravo-San Pedro3, 4, 5, 6, 7, Guido Kroemer3, 4, 5, 6, 7, 8, 9, Lorenzo Galluzzi3, 10, 11 1Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, 10124 Torino, Italy; 2Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; 3Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; 4Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; 5Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; 6INSERM, U1138, 75006 Paris, France; 7Meta- bolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; 8Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, 75015 Paris, France; 9Department of Women’s and Children’s Health, Karolinska University Hospital, 17176 Stockholm, Sweden; 10Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; 11Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA Glycolysis has long been considered as the major metabolic process for energy production and anabolic growth in cancer cells. Although such a view has been instrumental for the development of powerful imaging tools that are still used in the clinics, it is now clear that mitochondria play a key role in oncogenesis. Besides exerting central bioen- ergetic functions, mitochondria provide indeed building blocks for tumor anabolism, control redox and calcium ho- meostasis, participate in transcriptional regulation, and govern cell death. Thus, mitochondria constitute promising targets for the development of novel anticancer agents.
    [Show full text]
  • Updates in Molecular Pathology of Central Nervous System Gliomas in Adults
    UPDATES IN ONCOLOGY: PART 2 Updates in Molecular Pathology of Central Nervous System Gliomas in Adults MICHAEL PUNSONI, MD; JOHN E. DONAHUE, MD; HEINRICH D. ELINZANO, MD; TIMOTHY KINSELLA, MD 17 19 EN ABSTRACT Epidemiology Central nervous system (CNS) tumors are a heteroge- The incidence of CNS malignancies has been increasing. neous group of neoplasms divided into two broad cate- Most commonly, CNS tumors arise from glial cells, partic- gories, glial and non-glial. Non-glial tumors are derived ularly astrocytes and oligodendrocytes. Gliomas account from such diverse structures as the pineal gland, menin- for approximately 77% of primary malignant brain tumors ges, germ cells, and hematopoietic cells, as well as metas- (3). Most patients present between the fifth and seventh tases. Primary glial neoplasms, or those which originate decade of life. High-grade tumors are more common than from astrocytes, oligodendrocytes, or ependymal cells, low-grade and present a high risk of morbidity and mortal- include astrocytomas, oligodendrogliomas, ependymo- ity. The World Health Organization (WHO) in 2000 formu- mas, and mixed gliomas. Each entity has a unique mor- lated a classification system based on histologic findings phology and pattern of biologic behavior which portends that is used to stratify brain tumors into prognostic grades. a distinct prognosis and outcome. Individual outcomes High-grade gliomas (WHO grade III and IV) are most com- show some variability based on tumor location and age of monly seen in middle-aged to older adults, while grade II symptom onset; however, the underlying aggressiveness astrocytomas mainly affect younger adults. Management for of the tumor often dictates the time course of the disease.
    [Show full text]