Assessing Plasmin Generation in Health and Disease

Total Page:16

File Type:pdf, Size:1020Kb

Assessing Plasmin Generation in Health and Disease International Journal of Molecular Sciences Review Assessing Plasmin Generation in Health and Disease Adam Miszta 1,* , Dana Huskens 1, Demy Donkervoort 1, Molly J. M. Roberts 1, Alisa S. Wolberg 2 and Bas de Laat 1 1 Synapse Research Institute, 6217 KD Maastricht, The Netherlands; [email protected] (D.H.); [email protected] (D.D.); [email protected] (M.J.M.R.); [email protected] (B.d.L.) 2 Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] * Correspondence: [email protected]; Tel.: +31-(0)-433030693 Abstract: Fibrinolysis is an important process in hemostasis responsible for dissolving the clot during wound healing. Plasmin is a central enzyme in this process via its capacity to cleave fibrin. The ki- netics of plasmin generation (PG) and inhibition during fibrinolysis have been poorly understood until the recent development of assays to quantify these metrics. The assessment of plasmin kinetics allows for the identification of fibrinolytic dysfunction and better understanding of the relationships between abnormal fibrin dissolution and disease pathogenesis. Additionally, direct measurement of the inhibition of PG by antifibrinolytic medications, such as tranexamic acid, can be a useful tool to assess the risks and effectiveness of antifibrinolytic therapy in hemorrhagic diseases. This review provides an overview of available PG assays to directly measure the kinetics of plasmin formation and inhibition in human and mouse plasmas and focuses on their applications in defining the role of plasmin in diseases, including angioedema, hemophilia, rare bleeding disorders, COVID- 19, or diet-induced obesity. Moreover, this review introduces the PG assay as a promising clinical and research method to monitor antifibrinolytic medications and screen for genetic or acquired Citation: Miszta, A.; Huskens, D.; fibrinolytic disorders. Donkervoort, D.; Roberts, M.J.M.; Wolberg, A.S.; de Laat, B. Assessing Keywords: plasmin; plasmin generation; fibrinolysis Plasmin Generation in Health and Disease. Int. J. Mol. Sci. 2021, 22, 2758. https://doi.org/doi:10.3390/ ijms22052758 1. Introduction Academic Editor: László Muszbek Hemostasis is a process of regulated balance between clot formation and clot lysis, aimed at preventing blood loss while maintaining vascular patency. Activation of coagula- Received: 1 February 2021 tion factors and platelets leads to thrombin generation (TG) and ultimately, clot formation. Accepted: 5 March 2021 Subsequently, the fibrinolytic system is crucial for clot remodeling and lysis. Perturbation Published: 9 March 2021 of these processes can lead to bleeding disorders or thrombotic events. Although several tools to assess fibrinolysis have been developed, few methods are available to quantify the Publisher’s Note: MDPI stays neutral amount of plasmin generated. The scope of this review is to outline methods to measure with regard to jurisdictional claims in plasmin generation (PG) and highlight applications of these assays in human samples and published maps and institutional affil- mouse models of disease. iations. 2. Plasmin and the Molecular Mechanism of Plasmin Generation Plasmin is a major fibrinolytic protease generated by converting its zymogen plas- minogen by fibrinolytic activators in the presence or absence of fibrin. Plasminogen is Copyright: © 2021 by the authors. synthesized primarily in the liver and circulates in plasma at a concentration of approx- Licensee MDPI, Basel, Switzerland. imately 1.5 µmol/L [1]. Glu-plasminogen is a single chain glycoprotein with glutamic This article is an open access article acid (Glu) as the NH2 residue, consisting of an N-terminal activation peptide (NTP), five distributed under the terms and kringle domains (K1–K5), and a serine protease domain containing the catalytic triad conditions of the Creative Commons (Figure1)[1,2]. Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Int. J. Mol. Sci. 2021, 22, 2758. https://doi.org/10.3390/ijms22052758 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 17 Int. J. Mol. Sci. 2021, 22, 2758 2 of 17 Figure 1. Schematic representation of the primary structure of human glutamic (Glu)-plasminogen. The catalytic triad (His603, Asp646, and Ser741) within the protease domain, the activation site (Arg561–Val562), and the 24 disulfide bridges Figure 1. Schematicas well as therepresentation signal peptide areof the indicated. primary NTP, structure N-terminal of peptide; human K1–K5, glutamic kringles (Glu)-plasminogen. 1–5. Previously published The [catalytic3] and triad (His603, Asp646,adapted and from Ser741) Schaller within and Gerber the protease [4]. domain, the activation site (Arg561–Val562), and the 24 disulfide bridges as well as the signal peptide are indicated. NTP, N-terminal peptide; K1–K5, kringles 1–5. Previously published [3] and adapted from Schaller and Gerber [4]. Lys-plasminogen is a truncated plasmin-derived form that lacks the NH2-terminal 1–77 peptide and is produced during fibrinolysis [5]. Whereas Glu-plasminogen assumes a closed conformation because of intramolecular links between the NH2-terminal peptide Lys-plasminogen is a truncated plasmin-derived form that lacks the NH2-terminal 1– and kringle 5 domain, Lys-plasminogen has a more open conformation. The conformational 77 peptidechange and of Glu-plasminogenis produced during to Lys-plasminogen fibrinolysis during[5]. Whereas fibrinolysis Glu-plasminogen not only renders Lys- assumes a closed plasminogenconformation more because readily of activated intramolecular by plasminogen links activators,between butthe also NH endows2-terminal Lys- peptide and kringleplasminogen 5 domain, with a higher Lys-plasminogen affinity for fibrin than has its intacta more precursor. open Of theconformation. five kringle The conformationaldomains in change plasminogen, of Gl kringlesu-plasminogen 1, 4, and 5 are to reported Lys-plasmino to be thegen major during mediators fibrinolysis of the not plasminogen/fibrin interaction [6,7]. only rendersTissue Lys-plasminogen plasminogen activator more (tPA) readily and urokinase-typeactivated by plasminogen plasminogen activator activators, (uPA but also endowsor Lys-plasminogen urokinase) are plasminogen with a activators. higher affinity TPA is secreted for fibrin predominantly than its intact from endothelialprecursor. Of the five kringlecells triggered domains by localin plasminogen, stimuli, including kringles thrombin 1, activity, 4, and bradykinin 5 are reported (a product to of be high the major mediatorsmolecular of the weight plasminogen/fibrin kininogen cleavage interaction by kallikrein), [6,7]. and shear stress. TPA-mediated PG is initiated when thrombin, the central enzyme in coagulation, cleaves fibrinopeptides TissueA and plasminogen B from fibrinogen activator and enables (tPA) fibrin and network urokinase-type formation (Figureplasminogen2). This processactivator (uPA or urokinase)exposes cryptic are domainsplasminogen in fibrin(ogen) activators. that allows TPA for binding is secreted of both plasminogen predominantly and a from endothelialplasminogen cells triggered activator tPA by to local fibrin stimuli, via C-Lysine including binding sites.thrombin Exposure activity, of these bradykinin sites is (a productdriven of high primarily molecular by the interaction weight betweenkininogen complementary cleavage sitesby ofkallikrein the D and), E and regions shear [1]. stress. TPA-mediatedThe catalytic PG efficiency is initiated of plasminogen when thrombin, activation the by central tPA is 3 ordersenzyme of magnitude in coagulation, greater cleaves in the presence of fibrin than it is in its absence and 2 orders of magnitude greater in the fibrinopeptidespresence of A fibrinogen. and B from uPA fibrinogen is expressed and by endothelialenables fibrin cells, network macrophages, formation and renal (Figure 2). This processepithelial exposes cells and cryptic activates domains plasminogen in independentfibrin(ogen) of fibrin,that allows when it for interacts binding with of both plasminogenthe cellular and receptor a plasminogen urokinase protease-activated activator tPA receptorto fibrin (uPAR) via [8C-Lysine,9]. uPA catalytic binding sites. Exposureefficiency of these for sites plasminogen is driven activation primarily is similar by the in interaction the presence between and absence complementary of fibrin or sites fibrinogen. of the D and E regions [1]. The catalytic efficiency of plasminogen activation by tPA is 3 orders of magnitude greater in the presence of fibrin than it is in its absence and 2 orders of magnitude greater in the presence of fibrinogen. uPA is expressed by endothelial cells, macrophages, and renal epithelial cells and activates plasminogen independent of fibrin, when it interacts with the cellular receptor urokinase protease-activated receptor (uPAR) [8,9]. uPA catalytic efficiency for plasminogen activation is similar in the presence and absence of fibrin or fibrinogen. Int. J. Mol. Sci. 2021, 22, 2758 3 of 17 Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 17 FigureFigure 2. 2.A A schematic schematic representation representation of of the the fibrinolytic fibrinolytic system. system. Fibrinolysis Fibrinolysis is is initiated initiated when when the the product product of of coagulation, coagulation, thrombin,thrombin, cleaves cleaves fibrinopeptides fibrinopeptides A A and and B B from from fibrinogen, fibrinogen,
Recommended publications
  • Factor XIII and Fibrin Clot Properties in Acute Venous Thromboembolism
    International Journal of Molecular Sciences Review Factor XIII and Fibrin Clot Properties in Acute Venous Thromboembolism Michał Z ˛abczyk 1,2 , Joanna Natorska 1,2 and Anetta Undas 1,2,* 1 John Paul II Hospital, 31-202 Kraków, Poland; [email protected] (M.Z.); [email protected] (J.N.) 2 Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland * Correspondence: [email protected]; Tel.: +48-12-614-30-04; Fax: +48-12-614-21-20 Abstract: Coagulation factor XIII (FXIII) is converted by thrombin into its active form, FXIIIa, which crosslinks fibrin fibers, rendering clots more stable and resistant to degradation. FXIII affects fibrin clot structure and function leading to a more prothrombotic phenotype with denser networks, characterizing patients at risk of venous thromboembolism (VTE). Mechanisms regulating FXIII activation and its impact on fibrin structure in patients with acute VTE encompassing pulmonary embolism (PE) or deep vein thrombosis (DVT) are poorly elucidated. Reduced circulating FXIII levels in acute PE were reported over 20 years ago. Similar observations indicating decreased FXIII plasma activity and antigen levels have been made in acute PE and DVT with their subsequent increase after several weeks since the index event. Plasma fibrin clot proteome analysis confirms that clot-bound FXIII amounts associated with plasma FXIII activity are decreased in acute VTE. Reduced FXIII activity has been associated with impaired clot permeability and hypofibrinolysis in acute PE. The current review presents available studies on the role of FXIII in the modulation of fibrin clot properties during acute PE or DVT and following these events.
    [Show full text]
  • Role of the Renin–Angiotensin–Aldosterone and Kinin–Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID
    International Journal of Molecular Sciences Review Role of the Renin–Angiotensin–Aldosterone and Kinin–Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID Samantha L. Cooper 1,2,*, Eleanor Boyle 3, Sophie R. Jefferson 3, Calum R. A. Heslop 3 , Pirathini Mohan 3, Gearry G. J. Mohanraj 3, Hamza A. Sidow 3, Rory C. P. Tan 3, Stephen J. Hill 1,2 and Jeanette Woolard 1,2,* 1 Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] 2 Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK 3 School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] (E.B.); [email protected] (S.R.J.); [email protected] (C.R.A.H.); [email protected] (P.M.); [email protected] (G.G.J.M.); [email protected] (H.A.S.); [email protected] (R.C.P.T.) * Correspondence: [email protected] (S.L.C.); [email protected] (J.W.); Tel.: +44-115-82-30080 (S.L.C.); +44-115-82-31481 (J.W.) Abstract: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible Citation: Cooper, S.L.; Boyle, E.; for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe Jefferson, S.R.; Heslop, C.R.A.; and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardio- Mohan, P.; Mohanraj, G.G.J.; Sidow, vascular complications (CVCs) associated with infection.
    [Show full text]
  • MONONINE (“Difficulty ® Monoclonal Antibody Purified in Concentrating”; Subject Recovered)
    CSL Behring IU/kg (n=38), 0.98 ± 0.45 K at doses >95-115 IU/kg (n=21), 0.70 ± 0.38 K at doses >115-135 IU/kg (n=2), 0.67 K at doses >135-155 IU/kg (n=1), and 0.73 ± 0.34 K at doses >155 IU/kg (n=5). Among the 36 subjects who received these high doses, only one (2.8%) Coagulation Factor IX (Human) reported an adverse experience with a possible relationship to MONONINE (“difficulty ® Monoclonal Antibody Purified in concentrating”; subject recovered). In no subjects were thrombo genic complications MONONINE observed or reported.4 only The manufacturing procedure for MONONINE includes multiple processing steps that DESCRIPTION have been designed to reduce the risk of virus transmission. Validation studies of the Coagulation Factor IX (Human), MONONINE® is a sterile, stable, lyophilized concentrate monoclonal antibody (MAb) immunoaffinity chromatography/chemical treatment step and of Factor IX prepared from pooled human plasma and is intended for use in therapy nanofiltration step used in the production of MONONINE doc ument the virus reduction of Factor IX deficiency, known as Hemophilia B or Christmas disease. MONONINE is capacity of the processes employed. These studies were conducted using the rel evant purified of extraneous plasma-derived proteins, including Factors II, VII and X, by use of enveloped and non-enveloped viruses. The results of these virus validation studies utilizing immunoaffinity chromatography. A murine monoclonal antibody to Factor IX is used as an a wide range of viruses with different physicochemical properties are summarized in Table affinity ligand to isolate Factor IX from the source material.
    [Show full text]
  • The Rare Coagulation Disorders
    Treatment OF HEMOPHILIA April 2006 · No. 39 THE RARE COAGULATION DISORDERS Paula HB Bolton-Maggs Department of Haematology Manchester Royal Infirmary Manchester, United Kingdom Published by the World Federation of Hemophilia (WFH) © World Federation of Hemophilia, 2006 The WFH encourages redistribution of its publications for educational purposes by not-for-profit hemophilia organizations. In order to obtain permission to reprint, redistribute, or translate this publication, please contact the Communications Department at the address below. This publication is accessible from the World Federation of Hemophilia’s web site at www.wfh.org. Additional copies are also available from the WFH at: World Federation of Hemophilia 1425 René Lévesque Boulevard West, Suite 1010 Montréal, Québec H3G 1T7 CANADA Tel. : (514) 875-7944 Fax : (514) 875-8916 E-mail: [email protected] Internet: www.wfh.org The Treatment of Hemophilia series is intended to provide general information on the treatment and management of hemophilia. The World Federation of Hemophilia does not engage in the practice of medicine and under no circumstances recommends particular treatment for specific individuals. Dose schedules and other treatment regimes are continually revised and new side effects recognized. WFH makes no representation, express or implied, that drug doses or other treatment recommendations in this publication are correct. For these reasons it is strongly recommended that individuals seek the advice of a medical adviser and/or to consult printed instructions provided by the pharmaceutical company before administering any of the drugs referred to in this monograph. Statements and opinions expressed here do not necessarily represent the opinions, policies, or recommendations of the World Federation of Hemophilia, its Executive Committee, or its staff.
    [Show full text]
  • Update on Antithrombin I (Fibrin)
    ©2007 Schattauer GmbH,Stuttgart AnniversaryIssueContribution Update on antithrombinI(fibrin) Michael W. Mosesson 1957–2007) The Blood Research Institute,BloodCenter of Wisconsin, Milwaukee,Wisconsin, USA y( Summary AntithrombinI(fibrin) is an important inhibitor of thrombin exosite 2.Thelatterreaction results in allostericchanges that generation that functions by sequestering thrombin in the form- down-regulate thrombin catalytic activity. AntithrombinIdefi- Anniversar ingfibrin clot,and also by reducing the catalytic activity of fibrin- ciency (afibrinogenemia), defectivethrombin binding to fibrin th boundthrombin.Thrombin binding to fibrin takesplace at two (antithrombin Idefect) found in certain dysfibrinogenemias (e.g. 50 classesofnon-substrate sites: 1) in thefibrin Edomain (two per fibrinogen Naples 1), or areduced plasma γ ’ chain content (re- molecule) throughinteractionwith thrombin exosite 1; 2) at a ducedantithrombin Iactivity),predispose to intravascular singlesite on each γ ’ chain through interaction with thrombin thrombosis. Keywords Fibrinogen,fibrin, thrombin, antithrombin I ThrombHaemost 2007; 98: 105–108 Introduction meric with respecttoits γ chains,and accounts for ~85% of human plasma fibrinogen. Thrombinbinds to its substrate, fibrinogen, through an anion- Low-affinity thrombin binding activity reflects thrombin ex- binding sitecommonlyreferred to as ‘exosite 1’ (1,2). Howell osite1bindinginEdomain of fibrin, as recentlydetailedbyana- recognized nearly acenturyago that the fibrin clot itself exhibits lysesofthrombin-fibrin
    [Show full text]
  • Familial Multiple Coagulation Factor Deficiencies
    Journal of Clinical Medicine Article Familial Multiple Coagulation Factor Deficiencies (FMCFDs) in a Large Cohort of Patients—A Single-Center Experience in Genetic Diagnosis Barbara Preisler 1,†, Behnaz Pezeshkpoor 1,† , Atanas Banchev 2 , Ronald Fischer 3, Barbara Zieger 4, Ute Scholz 5, Heiko Rühl 1, Bettina Kemkes-Matthes 6, Ursula Schmitt 7, Antje Redlich 8 , Sule Unal 9 , Hans-Jürgen Laws 10, Martin Olivieri 11 , Johannes Oldenburg 1 and Anna Pavlova 1,* 1 Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany; [email protected] (B.P.); [email protected] (B.P.); [email protected] (H.R.); [email protected] (J.O.) 2 Department of Paediatric Haematology and Oncology, University Hospital “Tzaritza Giovanna—ISUL”, 1527 Sofia, Bulgaria; [email protected] 3 Hemophilia Care Center, SRH Kurpfalzkrankenhaus Heidelberg, 69123 Heidelberg, Germany; ronald.fi[email protected] 4 Department of Pediatrics and Adolescent Medicine, University Medical Center–University of Freiburg, 79106 Freiburg, Germany; [email protected] 5 Center of Hemostasis, MVZ Labor Leipzig, 04289 Leipzig, Germany; [email protected] 6 Hemostasis Center, Justus Liebig University Giessen, 35392 Giessen, Germany; [email protected] 7 Center of Hemostasis Berlin, 10789 Berlin-Schöneberg, Germany; [email protected] 8 Pediatric Oncology Department, Otto von Guericke University Children’s Hospital Magdeburg, 39120 Magdeburg, Germany; [email protected] 9 Division of Pediatric Hematology Ankara, Hacettepe University, 06100 Ankara, Turkey; Citation: Preisler, B.; Pezeshkpoor, [email protected] B.; Banchev, A.; Fischer, R.; Zieger, B.; 10 Department of Pediatric Oncology, Hematology and Clinical Immunology, University of Duesseldorf, Scholz, U.; Rühl, H.; Kemkes-Matthes, 40225 Duesseldorf, Germany; [email protected] B.; Schmitt, U.; Redlich, A.; et al.
    [Show full text]
  • The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’S Perspective
    International Journal of Molecular Sciences Review The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’s Perspective Hau C. Kwaan 1,* and Paul F. Lindholm 2 1 Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA 2 Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; [email protected] * Correspondence: [email protected] Abstract: The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone- angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable Citation: Kwaan, H.C.; Lindholm, state.
    [Show full text]
  • Plasma Contact System Activation Drives Anaphylaxis in Severe Mast Cell–Mediated Allergic Reactions
    Plasma contact system activation drives anaphylaxis in severe mast cell–mediated allergic reactions Anna Sala-Cunill, MD, PhD,a,b,c Jenny Bjorkqvist,€ MSc,c,d Riccardo Senter, MD,c,e Mar Guilarte, MD, PhD,a,b Victoria Cardona, MD, PhD,a,b Moises Labrador, MD, PhD,a,b Katrin F. Nickel, PhD,c,d,f Lynn Butler, PhD,c,d,f Olga Luengo, MD, PhD,a,b Parvin Kumar, MSc,c,d Linda Labberton, MSc,c,d Andy Long, PhD,f Antonio Di Gennaro, PhD,c,d Ellinor Kenne, PhD,c,d Anne Jams€ a,€ PhD,c,d Thorsten Krieger, MD,f Hartmut Schluter,€ PhD,f Tobias Fuchs, PhD,c,d,f Stefanie Flohr, PhD,g Ulrich Hassiepen, PhD,g Frederic Cumin, PhD,g Keith McCrae, MD,h Coen Maas, PhD,i Evi Stavrou, MD,j and Thomas Renne, MD, PhDc,d,f Barcelona, Spain, Stockholm, Sweden, Padua, Italy, Hamburg, Germany, Basel, Switzerland, Cleveland, Ohio, and Utrecht, The Netherlands Background: Anaphylaxis is an acute, potentially lethal, hypotension. Activated mast cells systemically released heparin, multisystem syndrome resulting from the sudden release of mast which provided a negatively charged surface for factor XII cell–derived mediators into the circulation. autoactivation. Activated factor XII generates plasma Objectives and Methods: We report here that a plasma protease kallikrein, which proteolyzes kininogen, leading to the cascade, the factor XII–driven contact system, critically liberation of bradykinin. We evaluated the contact system in contributes to the pathogenesis of anaphylaxis in both murine patients with anaphylaxis. In all 10 plasma samples models and human subjects. immunoblotting revealed activation of factor XII, plasma Results: Deficiency in or pharmacologic inhibition of factor XII, kallikrein, and kininogen during the acute phase of anaphylaxis plasma kallikrein, high-molecular-weight kininogen, or the but not at basal conditions or in healthy control subjects.
    [Show full text]
  • Assembly of an Integrated Human Lung Cell Atlas Reveals That
    medRxiv preprint doi: https://doi.org/10.1101/2020.06.02.20120634; this version posted June 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Assembly of an integrated human lung cell atlas reveals that SARS-CoV-2 receptor is co-expressed with key elements of the kinin-kallikrein, renin-angiotensin and coagulation systems in alveolar cells Davi Sidarta-Oliveira1,2, Carlos Poblete Jara1,3, Adriano J. Ferruzzi4, Munir S. Skaf4, William H. Velander5, Eliana P. Araujo1,3, Licio A. Velloso1 1Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Brazil 2 Physician-Scientist Graduate Program, School of Medical Sciences, University of Campinas, Brazil 3Nursing School, University of Campinas, Brazil 4Institute of Chemistry and Center for Computing in Engineering and Sciences University of Campinas, Brazil 5Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, USA Correspondence: Licio A. Velloso Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil Address: Rua Carl Von Lineaus s/n, Instituto de Biologia - Bloco Z. Campus Universitário Zeferino Vaz - Barão Geraldo, Campinas - SP, 13083-864 Phone: +55 19 3521-0025 E-mail: [email protected] Abstract SARS-CoV-2, the pathogenic agent of COVID-19, employs angiotensin converting enzyme-2 (ACE2) as its cell entry receptor. Clinical data reveal that in severe COVID- 19, SARS-CoV-2 infects the lung, leading to a frequently lethal triad of respiratory insufficiency, acute cardiovascular failure, and coagulopathy.
    [Show full text]
  • SARS-Cov-2 Entry Protein TMPRSS2 and Its Homologue, TMPRSS4
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441280; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 SARS-CoV-2 Entry Protein TMPRSS2 and Its 2 Homologue, TMPRSS4 Adopts Structural Fold Similar 3 to Blood Coagulation and Complement Pathway 4 Related Proteins ∗,a ∗∗,b b 5 Vijaykumar Yogesh Muley , Amit Singh , Karl Gruber , Alfredo ∗,a 6 Varela-Echavarría a 7 Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México b 8 Institute of Molecular Biosciences, University of Graz, Graz, Austria 9 Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes TMPRSS2 receptor to enter target human cells and subsequently causes coron- avirus disease 19 (COVID-19). TMPRSS2 belongs to the type II serine proteases of subfamily TMPRSS, which is characterized by the presence of the serine- protease domain. TMPRSS4 is another TMPRSS member, which has a domain architecture similar to TMPRSS2. TMPRSS2 and TMPRSS4 have been shown to be involved in SARS-CoV-2 infection. However, their normal physiological roles have not been explored in detail. In this study, we analyzed the amino acid sequences and predicted 3D structures of TMPRSS2 and TMPRSS4 to under- stand their functional aspects at the protein domain level. Our results suggest that these proteins are likely to have common functions based on their conserved domain organization.
    [Show full text]
  • The Two Faces of Thrombosis: Coagulation Cascade and Platelet Aggregation. Are Platelets the Main Therapeutic Target
    Thrombosis and Circulation Open Access Cimmino et al., J Thrombo Cir 2017, 3:1 Review Article Open Access The Two Faces of Thrombosis: Coagulation Cascade and Platelet Aggregation. Are Platelets the Main Therapeutic Target? Giovanni Cimmino*, Salvatore Fischetti and Paolo Golino Department of Cardio-Thoracic and Respiratory Sciences, Section of Cardiology, University of Campania “Luigi Vanvitelli”, Naples, Italy *Corresponding author: Giovanni Cimmino, MD, PhD, Department of Cardio-Thoracic and Respiratory Sciences, Section of Cardiology, University of Campania “Luigi Vanvitelli”, via Leonardo Bianchi, 180131 Naples, Italy. Tel: +39-081-7064175, Fax: +39-081-7064234; E-mail: [email protected] Received date: Dec 28, 2016, Accepted date: Jan 27, 2017, Published date: Jan 31, 2017 Copyright: © 2017 Giovanni C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Acute thrombus formation is the pathophysiological substrate underlying several clinical conditions, such as acute coronary syndrome (ACS) and stroke. Activation of coagulation cascade is a key step of the thrombotic process: vessel injury results in exposure of the glycoprotein tissue factor (TF) to the flowing blood. Once exposed, TF binds factor VII/VIIa (FVII/FVIIa) and in presence of calcium ions, it forms a tertiary complex able to activate FX to FXa, FIX to FIXa, and FVIIa itself. The final step is thrombin formation at the site of vessel injury with subsequent platelet activation, fibrinogen to fibrin conversion and ultimately thrombus formation. Platelets are the key cells in primary hemostasis.
    [Show full text]
  • Functional Plasminogen Activator Inhibitor 1 Is Retained on The
    ARTICLE Hemostasis Functional plasminogen activator inhibitor 1 is Ferrata Storti Foundation retained on the activated platelet membrane following platelet activation Gael B. Morrow,° Claire S. Whyte and Nicola J. Mutch Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK °Current address: Radcliffe Department of Medicine, University of Oxford, Oxford, UK Haematologica 2020 Volume 105(12):2824-2833 ABSTRACT latelets harbor the primary reservoir of circulating plasminogen acti- vator inhibitor 1 (PAI-1), but the reportedly low functional activity of Pthis pool of inhibitor has led to debate over its contribution to throm- bus stability. Here we analyze the fate of PAI-1 secreted from activated platelets and examine its role in maintaining thrombus integrity. Activation of platelets results in translocation of PAI-1 to the outer leaflet of the mem- brane, with maximal exposure in response to strong dual agonist stimula- tion. PAI-1 is found to co-localize in the 'cap' of phosphatidylserine-expos- ing platelets with its co-factor, vitronectin, and fibrinogen. Inclusion of tirofiban or Gly-Pro-Arg-Pro significantly attenuated exposure of PAI-1, indicating a crucial role for integrin αIIbb3 and fibrin in delivery of PAI-1 to the activated membrane. Separation of platelets post stimulation into sol- uble and cellular components revealed the presence of PAI-1 antigen and activity in both fractions, with approximately 40% of total platelet-derived PAI-1 remaining associated with the cellular fraction. Using a variety of fib- rinolytic models, we found that platelets produce a strong stabilizing effect against tissue plasminogen activator (tPA)-mediated clot lysis. Platelet lysate, as well as soluble and cellular fractions, stabilize thrombi against premature degradation in a PAI-1-dependent manner.
    [Show full text]