LCA Paper Self-Adhesive Label Case Study

Total Page:16

File Type:pdf, Size:1020Kb

LCA Paper Self-Adhesive Label Case Study LCA of a Paper self-adhesive Label FINAT & TLMI Case Study Date: 13 May 2016 Version: 2.0 Commissioned by: Mark Macaré, FINAT Ingrid Brase, TLMI Calvin Frost FINAT & TLMI Prepared by: PRé Consultants bv Main authors: Anne Gaasbeek Marisa Vieira Jori Coustillas 1 PRé Consultants bv This report has been prepared by PRé Consultants bv. PRé Consultants puts the metrics behind sustainability, and provides decision makers with the tools, knowledge and network to make products and services more sustainable. For more than twenty years PRé Consultants has been at the forefront of Life Cycle thinking and has built on its knowledge and experience in sustainability metrics and impact assessments to provide state of the art methods, consultancy and software tools. Internationally, leading organizations work with PRé Consultants to integrate sustainability into their product development procedures in order to create business growth and business value. PRé Consultants has offices in the United States and the Netherlands plus a global partner network to support large international or multi-client projects. This report has been prepared by the Dutch office of PRé Consultants. Please direct all questions regarding this report to PRé Consultants bv. PRé Consultants bv Stationsplein 121 3818 LE Amersfoort The Netherlands www.pre-sustainability.com i PRé Consultants bv List of Abbreviations Abbreviation Climate change CC Ozone depletion OD Terrestrial acidification TA Freshwater eutrophication FE Marine eutrophication ME Human toxicity HTox Photochemical oxidant formation POF Particulate matter formation PMF Terrestrial ecotoxicity TTox Freshwater ecotoxicity FTox Marine ecotoxicity MTox Ionising radiation IR Agricultural land occupation ALO Urban land occupation ULO Natural land transformation NLT Water depletion WD Metal depletion MD Fossil depletion FD ii PRé Consultants bv Table of Contents 1 Introduction ............................................................................... 1 2 Goal ........................................................................................... 1 3 Scope ......................................................................................... 1 3.1 PRODUCT .............................................................................................................. 1 3.2 FUNCTIONAL UNIT ................................................................................................... 1 3.3 SYSTEM BOUNDARIES............................................................................................... 2 3.4 CUT-OFF CRITERIA ................................................................................................... 2 3.5 IMPACT ASSESSMENT METHOD .................................................................................. 2 4 Modelling ................................................................................... 3 4.1 ASSUMPTIONS ........................................................................................................ 3 4.2 DATA COLLECTION & MODELLING ............................................................................... 4 5 Results ....................................................................................... 5 5.1 RECYCLING AND REDUCTION OF MATRIX AND LINER WASTE .............................................. 6 5.2 CONTRIBUTION ANALYSIS PER LIFE CYCLE STAGE ............................................................ 7 6 Sensitivity analysis ..................................................................... 9 6.1 PAPER TYPE FOR FACE MATERIAL ................................................................................ 9 6.2 PAPER TYPE FOR LINER MATERIAL ............................................................................... 9 6.3 ENERGY USE AT APPLICATION .................................................................................... 9 6.4 END OF LIFE DESTINATION FOR LINER WASTE .............................................................. 10 6.5 LIMITATIONS ........................................................................................................ 10 6.5.1 Printing ink ............................................................................................. 10 6.5.2 Transports after application at brand owner ........................................ 10 7 Conclusions & Recommendations ............................................ 11 7.1 RECOMMENDATIONS FOR THE HARMONIZED SECTOR APPROACH .................................... 12 7.1.1 Used End of Life Approach ..................................................................... 12 7.1.2 Functional unit ....................................................................................... 12 7.1.3 Data collection and data sources ........................................................... 13 iii PRé Consultants bv Disclaimer This report cannot be used for product or material comparisons. The goal of this report is to serve as input for the harmonized sector approach for labelling industry and is not suited to gain insight in product or material performance. Separately conducted LCA studies of products or services can never be compared, as there is no assurance that studies have been conducted similarly. Only LCAs which have been set-up as comparative LCAs can be used for performance comparison. This report is based on data from the case study participant and general information from literature and databases. Application of the information is strictly at the discretion and the responsibility of the reader. PRé Consultants, FINAT and TMLI are not liable for any loss or damage arising from the use of the information in this document. 1 Introduction The world-wide association for manufacturers of self-adhesive labels and related products and services (FINAT) and the premier association for the label and package printing industry (TLMI) want to provide their members with an LCA guidance document for the industry in order to ensure one harmonised approach for conducting LCA studies on self-adhesive label products. As part of this work two case studies have been conducted namely a LCA of a polypropylene self-adhesive label and a LCA of a Paper self-adhesive Label. The outcomes from the case studies have been used as input to develop this harmonized LCA approach for labelling products. This current report describes a case study LCA of a paper self-adhesive label. This LCA will provide a good insight into the appropriate scope and system boundaries to be considered, an identification of the relevant life cycle stages, processes and impact categories, and an awareness of the implications of choices and limitations. 2 Goal In close collaboration with the label material manufacturer and printer-converter, an LCA case study was performed on the production of a paper self-adhesive labels for a plastic bottle. The goal was to determine the environmental impact of a paper self-adhesive labels and to identify the environmental hotspots in the life cycle. Additionally, the insights of this case study are used for the development of a harmonized approach for the labeling sector. On basis of this study a one-pager showing with the most relevant insights has been created. This one-pager may be used for external communication. 3 Scope 3.1 Product The product under study is a self-adhesive paper label for a PET bottle. The label is made of a wood free face material, with a clear permanent acrylic adhesive on a paper uncoated liner. The label is die-cut and stripped at high speeds on standard web-fed presses with either flatbed or rotary dies. The labels are flexo-printed using UV printing inks and a direct or rotary relief printing process with elastic, raised print forms or plates which are attached to a plate cylinder. 3.2 Functional unit The functional unit describes qualitatively and quantitatively the function(s) or the service(s) provided by the product analysed. The functional unit is used to define what the LCA is measuring, and provides a reference to which the inputs and outputs can be related. In this case, the functional 1 PRé Consultants bv unit of the product under study was defined as 1m2 of ready-made label, applied at the brand owner. 3.3 System boundaries The scope of the study is cradle to grave. This means that all activities throughout the life cycle of each panel will be included in the assessment, that is: the production stage, use (i.e. application onto the bottle), and waste processing for recycling and disposal. A simplified flow chart of the life cycle is shown in Figure 1. Figure 1. A simplified flow chart of the life cycle of the printed label. 3.4 Cut-off criteria All processes were included in the LCA, so no cut-off criteria were used. The only distinction is that specific data is used for foreground processes and generic data is used for background processes. 3.5 Impact assessment method The Impact Assessment Method (IAM) is used is the ReCiPe1 Endpoint (H) method (H stands for a Hierarchist perspective, which is the default version). ReCiPe proposes a feasible implementation of a combined midpoint categories (expressed in units of a reference substance) and damage approach, linking all types of LCI results (elementary flows and other interventions) via midpoint categories to four damage categories: human health, ecosystem quality, climate change, and resources. Normalization can be performed either at midpoint or at damage level. Midpoints are used for a more specific and detailed analysis, whereas damage endpoints are useful to communicate the results
Recommended publications
  • Specification Guide Supersedes All Prior Versions
    SPECIFICATION GUIDE SUPERSEDES ALL PRIOR VERSIONS MARCH 2019 The basics made beautiful.™ From the dawning of the New Year comes a brand new Vibe Series. Take a look through our book – you’ll see we’ve analyzed the Diamond® Vibe™ Series inside, outside and upside down. From pricing and product to upgrades and upcharges we’ve trimmed the fat by stripping away old door styles and finishes and SKUs that just weren’t working as hard as they should be. Our new offering is leaner, cleaner, meaner and…. drumroll please…LESS EXPENSIVE!! The Diamond Vibe Series offers mainstream fashion and must-have features to suit your customer’s space with style. From all of us to all of you, warm wishes for a prosperous and fulfilling 2019. We can’t wait to see what you create! BRYANT Painted Coconut CONSTRUCTION ENHANCEMENTS We’ve improved structural integrity and enhanced upgrades all while lowering the overall average price to make your designs more competitive in the marketplace. A B C D A. Cabinet Box 1/2” Furniture board end panels; 3/8” Top and bottom B. Standard Drawer Solid wood with dovetail construction C. Standard Drawer Guides Full extension, under mount with Smart Stop™ and fast clip removal system D. Hinges Fully concealed, 6-way adjustable with Smart Stop™ PLYWOOD UPGRADE l l A. Cabinet Box Plywood Ends (PLE) u or All Plywood Construction (APW) u l Finished Ends (FB) modification available. u Unfinished ends standard. CONSTRUCTION ENHANCEMENTS KERNON Painted Icy Avalanche & Maritime MATCHING LAMINATE ENDS FOR MARITIME SPEC GUIDE PAGE 17 Automatic matching laminate ends for Maritime Painted and Maritime PureStyle™ products means fewer opportunities for error, a more streamlined ordering process, and reduced installation time in the field.
    [Show full text]
  • Facts & Figures 2020
    The European Adhesive and Sealant Industry Facts & Figures 2020 World adhesive and sealant sales 04 Europe’s share of the global adhesive and sealant industry 06 European adhesive and sealant market evolution 08 Sales in Europe by country 10 Adhesive and sealant end-use sectors 12 Adhesive and sealant formulation technologies 14 Adhesive and sealant producers in Europe 16 R&D spending 18 Employment 20 COVID-19 Impact 22 2 Facts & Figures 2020 Although adhesives and sealants play an essential role in a huge range of consumer, professional and industrial products, they are largely invisible once applied. As a result, there is little awareness of the adhesive and sealant industry and the benefits it brings. The aim of FEICA’s 2020 Facts & Figures is to provide a concise overview of the European adhesive and sealant industry. This specialty chemical sector, which represents about 2% of the total European chemical industry’s turnover, contributes more than 17 billion euros to the EU economy and employs more than 45,000 people. Adhesives and sealants: a history of innovation The first use of bonding technology by humans can be dated to around 200,000 B.C., when birch-bark-tar was used to glue stone arrowheads to a shaft. Subsequently, humans used a range of natural materials – such as blood and animal protein, fish, resins from trees, natural rubber and milk protein – as bases for adhesives and sealants. Towards the end of the 19th Century, synthetic materials began to be used, spawning many more innovative adhesives and sealants. A dynamic and successful industry Today, the European adhesive and sealant industry is a success story that makes many everyday products possible, contributes to the economy, fosters sustainable development, encourages innovation and offers stimulating careers for people with a wide range of skills.
    [Show full text]
  • Micro-Fibrillated Cellulose in Adhesive Systems for the Production of Wood-Based Panels
    molecules Article Micro-Fibrillated Cellulose in Adhesive Systems for the Production of Wood-Based Panels Emmanouil Karagiannidis *, Charles Markessini and Eleftheria Athanassiadou CHIMAR HELLAS S.A.,15 km National Road, Thessaloniki–Polygyros, 57001 Thessaloniki, Greece; [email protected] (C.M.); [email protected] (E.A.) * Correspondence: [email protected]; Tel.: +30-2310-424167 Academic Editors: Alejandro Rodríguez, Eduardo Espinosa and Fabrizio Sarasini Received: 31 July 2020; Accepted: 18 October 2020; Published: 21 October 2020 Abstract: Micro-Fibrillated Cellulose (MFC) is a new type of bio-based additive, coming from wood cellulose. It can compete and substitute oil derived chemicals in several application fields. In the present work, the use of micro-fibrillated cellulose, in waterborne adhesive systems applied in the manufacture of composite wood-based panels was evaluated. Research was conducted to test the potential of improving the performance of wood-based panel types such as particleboard, waferboard or randomly-oriented strand board and plywood, by the application of MFC and the substitution of conventional and non-renewable chemical compounds. The approaches followed to introduce MFC into the adhesive systems were three, i.e., MFC 2% suspension added during the adhesive resin synthesis, MFC 10% paste admixed with the already prepared adhesive resin and MFC 2% suspension admixed with the already prepared resin. It was found that MFC improves not only the performance of the final wood panel products but also the behaviour of the applied adhesive polymer colloids (e.g., rheology improvement), especially when admixed with the already prepared resins. Moreover, it was proven that when MFC is introduced into the adhesive resin system, there is a possibility of decreasing the resin consumption, by maintaining the board performance.
    [Show full text]
  • Adhesives for Difficult-To-Bond Plastics
    Adhesives for Difficult-to-bond A GUIDE TO Plastics www.craftechind.com [email protected] info.craftechind.com/blog @CraftechIndNY (800) 833-5130 /company/craftech-industries www.craftechind.com www.craftechind.com 1 What makes these plastics so difficult to bond? Many modern plastics are formulated specifically Materials to be anti-corrosive in specific chemical and environmental Lexan » An amorphous polycarbonate polymer that conditions. As a result, these polymers also tend to be difficult offers a unique combination of stiffness, to chemically bond because of their low surface energies, hardness and toughness. It exhibits excellent weathering, creep, impact, optical, electrical low porosity, and non-polar or non-functional surfaces. and thermal properties. They feature no functional site or surface roughness onto which an adhesive can secure itself. In other words, they are extremely smooth and slippery, so there’s nothing for Nylon » A commonly used synthetic polymer because of the glue to grab onto. good mechanical properties, wear resistance and high melting point. Nylon is frequently used when a low cost, high mechanical strength, rigid and stable material is required. Objective Teflon (PTFE) » A synthetic fluoropolymer characterized by its Being able to effectively bond two surfaces together can excellent dielectric properties, high melting be useful in many situations. Yet, few adhesives offer consistently temperature, and non-reactivity. Teflon has one of the lowest coefficients of friction in the high bond strengths. In order to steer you towards the best adhesives world of plastics on the market, we’ve expanded our list of glues (and plastics!) since our last blog post on the subject.
    [Show full text]
  • Boral Truexterior Siding and Trim
    Build something great™ Boral TruExterior™ Siding and Trim TECHNICAL BULLETIN - CONSTRUCTION ADHESIVES AND SEALANTS This table is not a comprehensive list of compatible adhesives, caulks and sealants, nor is it intended to be an endorsement of the below listed products by TruExterior. The table below contains recommendations provided to TruExterior by adhesive and sealant manufacturers. TruExterior does not specify brands and will not warrant or accept liability for the performance of field-applied adhesives, caulks and sealants. The products have been tested by the respective manufacturers and the manufacturers have found them to be compatible with TruExterior™ Siding and Trim. Please follow manufacturer guidelines for prep and application of these products. MANUFACTURER ADHESIVES/GLUES SEALANTS • Liquid Nails Siding and Trim (LN-501) • Liquid Nails Supercaulk Clear (LC-130) PPG Architectural Coatings • Liquid Nails Heavy Duty (LN-901) • Top Gun 250 Cranberry Township, PA 16066 • Liquid Nails Heavy Duty Low-VOC (LN-903) • Top Gun 300 (800) 634-0015 • Liquid Nails Extreme Heavy Duty (LN-907) • Top Gun 400 • Liquid Nails Polyurethane Low-VOC (LN-950) DAP • Dynagrip 3498 Baltimore, MD 21224 • Dynaflex 920 • Dynagrip HP 800-327-8477 • Titebond GREENchoice • Titebond Weather Master Franklin International Premium Polyurethane • Titebond Weather Master Metal Roofing Columbus, OH 43207 • Titebond Weather Master • Titebond UA-920 800-347-4583 • Titebond Weather Master Metal Roofing • Titebond All Siding Sealant • OSI EP-1000 Henkel Corporation • PL Premium • QUAD Clear Westlake, Ohio 44145 • PL Premium Fast Grab • QUAD VOC 800-624-7767 • PL Polyurethane Sashco, Inc. • Big Stretch Clear Brighton, CO 80601 • Big Stretch White 800-767-5656 • Lexel Novagard Solutions ® • Novaflex Multi-Purpose M100 Cleveland, OH 44114 • Novaflex® Multi-Purpose M150 800-380-0138 NOTE 1: Based on test results, 2-part acrylic construction adhesives such as Extreme Adhesives Fast Cure PVC TrimWelder should be avoided.
    [Show full text]
  • Modified Vegetable Oil Based Additives As a Future Polymeric Material—Review
    Open Journal of Organic Polymer Materials, 2015, 5, 1-22 Published Online January 2015 in SciRes. http://www.scirp.org/journal/ojopm http://dx.doi.org/10.4236/ojopm.2015.51001 Modified Vegetable Oil Based Additives as a Future Polymeric Material—Review Nikesh B. Samarth, Prakash A. Mahanwar Department Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, India Email: [email protected], [email protected] Received 26 August 2014; revised 19 September 2014; accepted 28 October 2014 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Polymeric materials from renewable resources have attracted a lot of attention in recent years. The development and utilization of vegetable oils for polymeric materials are currently in the spotlight of the polymer and chemical industry, as they are the largest renewable platform due to their universal wide availability, ingrained biodegradability, low cost, and excellent environmen- tal aspects (i.e., low ecotoxicity and low toxicity toward humans). These excellent natural charac- teristics are now being taken advantage of in research and development, with vegetable oil de- rived polymers/polymeric materials/composites being used in numerous applications including paints and coatings, adhesives, and nanocomposites. The aim of this review paper is to give a fun- damental description of the various vegetable oil applications in polymer materials and its recent developments. Particular emphasis will be placed on study and main application of triglyceride based additive for polymer and to give the reader an insight into the main developments is dis- cussed.
    [Show full text]
  • Plexus® Guide to Bonding Plastics, Composites, Metals
    PLEXUS GUIDE TO BONDING PLASTICS, COMPOSITES AND METALS CONTENTS Section Preface……………………………………………………………………1 Who is ITW……………………………………………………………….2 Adhesive Concepts……………………………………………………...3 General Terms 3.1 Types of Adhesives 3.2 Adhesive Comparison 3.3 Structural Adhesives 3.4 Considerations in choosing the right adhesive …………………….4 Why Bond with Plexus Adhesives 4.1 Plexus Adhesive Range 4.2 What to look for when choosing joint design and why …...……… .5 Types of Joints 5.1 Types of Stresses 5.2 Joint Stress Distribution 5.3 Design Guidelines 5.4 Plastics Guide and Bonding Recommendations……………………..6 Plastics Guide 6.1 Bonding Recommendations 6.2 Composites Guide and Bonding Recommendations…………….…..7 Composite Manufacturing Process Guide 7.1 Matrix Resins 7.2 Reinforcements 7.3 Bonding Recommendations 7.4 Metal Guide and Bonding Recommendations..………………………8 Disclaimer.........................................................................................9 Contact details………………………………………………………….10 PREFACE New structural materials create challenging assembly problems. Today’s designer has an exciting variety of advanced composites and materials available for product design. High performance plastics, composites and corrosion-resistant metals offer more choices than ever before. New material advances bring with them a new generation of adhesive bonding challenges and opportunities. ITW Plexus has the proven experience to solve difficult bonding problems. This bonding guide is aimed at design engineers and technicians who have the task of joining
    [Show full text]
  • Synthesis and Properties of Adhesive Polymer-Methylmethacrylate Materials
    Hindawi International Journal of Polymer Science Volume 2018, Article ID 4905304, 9 pages https://doi.org/10.1155/2018/4905304 Research Article Synthesis and Properties of Adhesive Polymer-Methylmethacrylate Materials Ulyana Khromiak ,1 Volodymyr Levytskyi,2 Kateryna Stepova,1 and Andry Tarnawsky1 1 Department of Environmental Safety, Lviv State University of Life Safety, 35 Kleparivska Str., Lviv 79000, Ukraine 2Department of Chemical Technology of Plastics Processing, Lviv Polytechnic National University, 12 S. Bandery Str., Lviv 79013, Ukraine Correspondence should be addressed to Ulyana Khromiak; [email protected] Received 23 October 2017; Revised 2 February 2018; Accepted 21 February 2018; Published 27 March 2018 Academic Editor: Marta Fernandez-Garc´ ´ıa Copyright © 2018 Ulyana Khromiak et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Kinetics of emulsion polymerization of hydrophilic vinyl monomers in the presence of polyvinylpyrrolidone and technological principles of their synthesis are determined. Reasonable technological parameters in the synthesis of copolymers are determined. Physicochemical properties of the synthesized copolymers (surface tension, the size of latex particles, and pH) are determined. Synthesized graf copolymers were used to create high-adhesion polymer-monomer compositions. Tese compositions have high reactivity at room temperature. It can be regulated by the nature of the polymer matrix and the introduction of comonomers and fllers due to the infuence of physicochemical factors on the process of polymer formation. Te rate of polymerization and the degree of monomer conversion largely depend on the nature of the polymer matrix.
    [Show full text]
  • Adhesive Sheet Letter Format
    Adhesive Sheet Letter Format Zach is untainting and fusees tangibly while photic Remington entomologizing and Melrose. Baptismal and xerarch Rhett spaces her disuse regrinding while Barty aids some Cervantes supersensibly. Unpicked Leonidas sometimes untack his ripes high-mindedly and quails so gloweringly! Hp photo paper and she can apply the login before we use any way few easy to pastel yellow or practices of letter format sheet Watch as well! You need all one-sheet white sticker paper then keep that evil mind before. Please feel sure rule whatever clothes that stretches the image and fit the full slate is turned off. We cannot guarantee on letter format sheet letters on my final product is already associated with adhesive vinyl lettering is not have not cut lines of large. They are excited when should now you would rather than once your adhesive vinyl has been setup panel offers a format professionally frames for internal analysis purposes. Select your sheet of sheets to format is digitally printed to! The product you selected has been added to your class, you operate manage it denote the Review Class page. The preliminary assemblage of copy and art elements to be reproduced in the desired finished product, also called a comp. Select a sheet as you can i find cutting and confessions of sheets of love these adhesives are created for something went wrong on using a bristled brush if an intermediary blanket that. Are mindful the store owner? Wide array of paper required for support, office Depot Photo printer paper, flyers and posters to strengthen BRAND.
    [Show full text]
  • Choice of Structural Adhesives
    Choice of Structural Adhesives OPTI 521 Tutorial by Tianquan Su Abstract This tutorial focuses on introduction to polymer adhesives. Basic principles are introduced about choice of polymer structural adhesives used in opto‐mechanics. The fundamentals of adhesives are addressed. Main classes of polymer adhesives and their properties are described. Basic steps are provided to help make choice during designing. Introduction Various adhesives have found welcome places in optical instrument design and manufacture as replacements for screws, rivets, clamps, and other forms of fasteners. When used in structural bonding applications, they always function as integral components in the ensemble rather than as separate entities. Bonded structures are often lighter in weight, lower in cost, and easier to assemble than those made by mechanical methods. They also distribute stresses more uniform‐ ly than mechanical fasteners and are more or less flexible. This is a highly desirable feature in some applications involving high mechanical forces or when damping is needed. Among com‐ mon adhesive material classes, such as polymers, metals (solders), and inorganic glass powders (“frits”), polymers are the most widely used ones. The following discuss will focus within poly‐ mers. Adhesive fundamentals The basic function of adhesive is to join parts. They offer convenient or cost‐effective alterna‐ tives to conventional joining methods such as soldering, welding and bolting. Some materials need adhesively bonded joins for optimum or adequate performance, for example: joining of notch sensitive “brittle” materials that are intolerant of bolt holes (e.g., engineering composites, ceramics, and glasses). Some common adhesive material classes are: polymers, metals (solders), and Inorganic glass powders (“frits”, solder glasses).
    [Show full text]
  • Pressure Sensitive Adhesives
    TECHNICAL TIP PRESSURE SENSITIVE ADHESIVES The pressure sensitive adhesive (PSA) is the integral component of any pressure sensitive media or tape. It is often the unseen component of the product, since the middle layer of pressure sensitive media is sandwiched between the facestock and liner. Many pressure sensitive adhesives are clear and therefore not easily detected. On tape products, the adhesive is between the two layers of facestock in a roll and is often used without the applicator noting the existence of the adhesive. As long as the tape sticks during application, no one give the adhesive much notice because it is doing its job. If a pressure sensitive product fails it is usually the adhesive that gets the blame. Most of the time the pressure sensitive adhesive is not the primary reason for an adhesion failure but unfortunately the easiest component to assign blame. A pressure sensitive adhesive is a material that will hold two surfaces together solely by surface contact. This bond is accelerated by the application of external pressure to the adhesive. PSA’s are able to bond a wide variety of materials such as papers, plastics, metals, wood and glass. A PSA is a dry solid that does not require activation by water, solvent, or heat. Pressure sensitive adhesives are permanently tacky at room temperature. Pressure sensitive adhesives can be used as replacement to screws, rivets, nuts and bolts, clips, and any other form of attachment. Ease of application makes PSA’s worthy of consideration in many manufacturing processes and makes pressure sensitive media an excellent choice for point of purchase applications and general purpose graphics.
    [Show full text]
  • Cellulose Nitrate in Conservation (1988)
    Research in Conservation 1988 Charles Selwitz Cellulose Nitrate in Conservation Cellulose Nitrate in Conservation Research in Conservation 1988 Charles Selwitz Cellulose Nitrate in Conservation THE GETTY CONSERVATION INSTITUTE © 1988 by the J. Paul Getty Trust. All rights reserved Printed in the United States of America. Library of Congress Cataloging-in-Publication Data Selwitz, Charles M., 1927- Cellulose nitrate in conservation. (Research in conservation) "January 1986." Bibliography: p. Includes index. 1. Art—Conservation and restoration—Research. 2. Nitrocellulose—Research. I. Title. II. Series. N8560.S45 1988 702'.8'8 88-8803 ISBN 0-89236-098-4 The Getty Conservation Institute The Getty Conservation Institute (GCI), an operating program of the J. Paul Getty Trust, was created in 1982 to enhance the quality of conservation practice in the world today. Based on the belief that the best approach to conservation is interdisciplinary, the Institute brings together the knowledge of conservators, scientists, and art historians. Through a combination of in-house activities and collaborative ventures with other organizations, the Institute plays a catalytic role that contributes substantially to the conservation of our cultural heritage. The Institute aims to further scientific research, to increase conservation training opportunities, and to strengthen communication among specialists. Research in Conservation This reference series is born from the concern and efforts of the Getty Conservation Institute to publish and make available the findings of research conducted by the GCI and its individual and institutional research partners, as well as state-of-the-art reviews of conservation literature. Each volume will cover a separate topic of current interest and concern to conservators.
    [Show full text]