Ehrlichia Ruminantium : Rôle Du Système De Sécrétion De Type IV Et Des Protéines De La Membrane Externe

Total Page:16

File Type:pdf, Size:1020Kb

Ehrlichia Ruminantium : Rôle Du Système De Sécrétion De Type IV Et Des Protéines De La Membrane Externe UNIVERSITE DES ANTILLES ET DE LA GUYANE U.F.R. Sciences de la Vie et de la Terre THESE pour l’obtention du grade de DOCTEUR DE L’UNIVERSITE DES ANTILLES ET DE LA GUYANE Discipline : Sciences de la vie - Microbiologie Ecole Doctorale Pluridisciplinaire de l'Université des Antilles Guyane Présentée et soutenue publiquement par Amal MOUMENE Le 16 janvier 2015 Caractérisation de déterminants moléculaires du pouvoir pathogène d’Ehrlichia ruminantium : rôle du système de sécrétion de type IV et des protéines de la membrane externe Co-Directeurs de thèse : Thierry LEFRANCOIS et Olivier GROS Encadrant de thèse : Damien MEYER Devant le jury composé de : Matthieu ARLAT, Professeur de l’Université Paul Sabatier, Toulouse ; Rapporteur Matteo BONAZZI, Chargé de Recherche, HDR, CNRS, Montpellier ; Rapporteur Murielle VAYSSIER-TAUSSAT, Directrice de Recherche, Inra, Maison-Alfort ; Examinatrice Thierry LEFRANCOIS, Directeur Unité CMAEE, CIRAD, Montpellier ; Examinateur Olivier GROS, Professeur de l’Université Antilles-Guyane, Guadeloupe, Examinateur Damien MEYER, Chargé de Recherche, CIRAD, Guadeloupe ; Examinateur Recherches effectuées au sein de l’UMR CIRAD-INRA CMAEE, «Contrôle des maladies animales exotiques et émergentes », Domaine de Duclos, 97170 Petit-Bourg, Guadeloupe Financement de thèse : Union européenne, FEDER 1/1.4-30305, « Risques en santé animale et végétale » et CIRAD AUTEUR : Amal Moumène TITRE : Caractérisation de déterminants moléculaires du pouvoir pathogène d'Ehrlichia ruminantium: rôle du système de sécrétion de type IV et des protéines de la membrane externe. DIRECTEURS DE THESE : Thierry Lefrançois / Olivier Gros ENCADRANT : Damien Meyer RESUME Identifier les déterminants moléculaires des bactéries pathogènes et comprendre comment ils sont régulés pour permettre l’adaptation à l’environnement et à l’hôte est crucial pour imaginer des méthodes de contrôle innovantes et proposer des alternatives thérapeutiques. Ehrlichia ruminantium est une bactérie intracellulaire obligatoire de la famille des Anaplasmataceae, vectorisée par les tiques du genre Amblyomma et causant la cowdriose, une maladie fatale des ruminants. Dans le cadre de cette thèse, nous avons caractérisé certains déterminants du pouvoir pathogène d’E. ruminantium selon trois niveaux de résolution différents. Une approche globale sans a priori, nous a tout d’abord permis de déterminer le protéome de la membrane externe de la forme infectieuse d’E. ruminantium. Cette étude nous a permis d’avoir une meilleure vision de l’architecture de la membrane externe qui constitue la première interface d’échanges entre la bactérie et sa cellule hôte. Ensuite, nous avons montré la fonction d’ErxR comme régulateur central du système de sécrétion de type IV (SST4) et de la famille multigénique map1 en permettant d’intégrer les signaux environnementaux que sont la carence en fer et l’acidité du milieu. En outre, ce travail a permis d’établir pour la première fois le lien entre les protéines Map1 de la membrane externe et le SST4 et suggère donc qu’elles puissent avoir un rôle direct dans la virulence. Enfin, une analyse in silico utilisant le logiciel S4TE a conduit à la caractérisation d’Erip1, le premier effecteur du SST4 d’E. ruminantium. Cet effecteur, phosphorylé sur les tyrosines et injecté dans le noyau de la cellule hôte, ne présente aucune homologie dans les bases de données et pourrait donc représenter une nouvelle famille de nucléomodulines. La recherche d’éventuels partenaires protéiques et l’identification des cibles intracellulaires de cet effecteur permettront de mieux comprendre comment E. ruminantium manipule la cellule hôte à son profit. Enfin, la caractérisation des voies de signalisation ciblées par Erip1 sera riche d’enseignements sur la réponse cellulaire à l’infection par E. ruminantium. MOTS-CLES : Ehrlichia ruminantium, protéome, système de sécrétion de type IV, protéines de la membrane externe, Map1, ErxR, tr1, effecteurs, Erip1 DISCIPLINE : Microbiologie SOMMAIRE AVANT-PROPOS ................................................................................. 4 INTRODUCTION GENERALE ............................................................................. 6 Manuscrit préliminaire : Ehrlichia and Anasplama’s molecular tricks to manipulate their host ............................................................................................ 7 RESULTATS .............................................................................................. 33 PARTIE 1 ...................................................................................... 34 IDENTIFICATION DES PROTEINES DE LA MEMBRANE EXTERNE D’E. RUMINANTIUM ............... 34 1. Préambule ..................................................................................... 34 2. Publication: Proteomic profiling of the outer membrane fraction of the obligate intracellular bacterial pathogen Ehrlichia ruminantium ................................ 36 PARTIE 2 ...................................................................................... 80 ETUDE DE LA REGULATION DU SST4 ET DES PROTEINES MAP1 DE LA MEMBRANE EXTERNE D’E. RUMINANTIUM ................................................................................. 80 1. Préambule ..................................................................................... 80 2. Manuscrit préliminaire: Acidic and iron starvation conditions upregulate Ehrlichia ruminantium Type IV secretion system and map1 genes through the master regulatory protein ErxR ........................................................................ 82 PARTIE 3 ..................................................................................... 118 CARACTERISATION D’ERIP1, UN NOUVEL EFFECTEUR DU SST4 D’E. RUMINANTIUM .......... 118 1. Préambule ................................................................................... 118 2. Manuscrit préliminaire: Erip1, a new substrate of the E. ruminantium type IV secretion system, is tyrosine phosphorylated and imported into host cell nucleus119 DISCUSSION GENERALE ............................................................................. 154 DISCUSSION GENERALE ET PERSPECTIVES ..................................................... 155 REFERENCES BIBLIOGRAPHIQUES ................................................................. 169 ANNEXES .............................................................................................. 176 - 1 -1 Avant-Propos Avant-propos Les maladies animales et zoonotiques émergentes provoquent chaque année de lourdes pertes parmi les élevages et présentent un risque croissant en termes de santé humaine pour les populations. Certaines bactéries pathogènes intracellulaires obligatoires de la famille des Anaplasmataceae sont les principaux agents des maladies émergentes transmises par les tiques (Rikihisa 2010). Comprendre les mécanismes moléculaires impliqués dans l’interaction hôte-pathogène, et plus spécifiquement l’adaptation à l’hôte et la mise en place du pouvoir pathogène chez des bactéries telles que Ehrlichia spp. ou Anaplasma spp. revêt un enjeu majeur pour la recherche de nouveaux traitements contre ces bactéries pathogènes. Au laboratoire, nous étudions la bactérie Ehrlichia ruminantium, responsable d’une maladie mortelle des ruminants, la cowdriose. Alors que les bactéries du genre Ehrlichia subvertissent certains mécanismes majeurs de défense de l’hôte, les facteurs de virulence bactériens responsables de l’échec de ces défenses sont encore peu connus. Un des facteurs de virulence important pour l’infection intracellulaire chez les Ehrlichia est le système de sécrétion de type IV (SST4), qui délivre directement des protéines effectrices (ET4s) à l’intérieur des cellules hôtes eucaryotes. Ces ET4s ont été identifiés chez de nombreuses bactéries pathogènes (Agrobacterium tumefaciens, Bartonella henselae, Brucella abortus, Anaplasma spp., Ehrlichia chaffeensis, Coxiella burnetii, Legionella pneumophila) (Chen et al. 2010; Marchesini et al. 2011; Rikihisa and Lin 2010; Schulein et al. 2005; Vergunst et al. 2005; Zhu et al. 2011). Ils jouent un rôle crucial lors de l’infection et dans le développement de la maladie comme par exemple en inhibant la réponse immunitaire innée de l’hôte, en détournant les voies de signalisation cellulaire et le trafic vésiculaire ou en encore en utilisant les voies de recyclage liées à l’autophagie (Ivanov and Roy 2009; Newton, McDonough, and Roy 2013; Niu et al. 2012). Plusieurs études ont révélé que le SST4 de nombreuses bactéries était sous le contrôle de mécanismes de régulation fins et variés (facteurs de transcription, signaux environnementaux) affectant l’activité des promoteurs des gènes codant le SST4 à différents degrés au cours du cycle de développement bactérien (Z. Cheng, Wang, and Rikihisa 2008; Wu et al. 2012). La compréhension globale et détaillée des voies de régulation du SST4 chez E. ruminantium en réponse à différents signaux environnementaux nous permettrait d’imaginer de nouvelles stratégies thérapeutiques en renforçant par exemple les voies perturbées par la bactérie par des approches pharmaceutiques. 4 4 Avant-Propos Ma thèse a été menée au sein de l’unité « Contrôle des maladies animales exotiques et émergentes » au CIRAD en Guadeloupe et s’inscrit dans la thématique globale du laboratoire visant à étudier les interactions étroites entre la bactérie, la tique et l'hôte. Des approches sans a priori de type « omics » (transcriptomique, protéomique et métabolomique) sont actuellement développées au laboratoire mais des approches
Recommended publications
  • Official Nh Dhhs Health Alert
    THIS IS AN OFFICIAL NH DHHS HEALTH ALERT Distributed by the NH Health Alert Network [email protected] May 18, 2018, 1300 EDT (1:00 PM EDT) NH-HAN 20180518 Tickborne Diseases in New Hampshire Key Points and Recommendations: 1. Blacklegged ticks transmit at least five different infections in New Hampshire (NH): Lyme disease, Anaplasma, Babesia, Powassan virus, and Borrelia miyamotoi. 2. NH has one of the highest rates of Lyme disease in the nation, and 50-60% of blacklegged ticks sampled from across NH have been found to be infected with Borrelia burgdorferi, the bacterium that causes Lyme disease. 3. NH has experienced a significant increase in human cases of anaplasmosis, with cases more than doubling from 2016 to 2017. The reason for the increase is unknown at this time. 4. The number of new cases of babesiosis also increased in 2017; because Babesia can be transmitted through blood transfusions in addition to tick bites, providers should ask patients with suspected babesiosis whether they have donated blood or received a blood transfusion. 5. Powassan is a newer tickborne disease which has been identified in three NH residents during past seasons in 2013, 2016 and 2017. While uncommon, Powassan can cause a debilitating neurological illness, so providers should maintain an index of suspicion for patients presenting with an unexplained meningoencephalitis. 6. Borrelia miyamotoi infection usually presents with a nonspecific febrile illness similar to other tickborne diseases like anaplasmosis, and has recently been identified in one NH resident. Tests for Lyme disease do not reliably detect Borrelia miyamotoi, so providers should consider specific testing for Borrelia miyamotoi (see Attachment 1) and other pathogens if testing for Lyme disease is negative but a tickborne disease is still suspected.
    [Show full text]
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • Naeglaria and Brain Infections
    Can bacteria shrink tumors? Cancer Therapy: The Microbial Approach n this age of advanced injected live Streptococcus medical science and into cancer patients but after I technology, we still the recipients unfortunately continue to hunt for died from subsequent innovative cancer therapies infections, Coley decided to that prove effective and safe. use heat killed bacteria. He Treatments that successfully made a mixture of two heat- eradicate tumors while at the killed bacterial species, By Alan Barajas same time cause as little Streptococcus pyogenes and damage as possible to normal Serratia marcescens. This Alani Barajas is a Research and tissue are the ultimate goal, concoction was termed Development Technician at Hardy but are also not easy to find. “Coley’s toxins.” Bacteria Diagnostics. She earned her bachelor's degree in Microbiology at were either injected into Cal Poly, San Luis Obispo. The use of microorganisms in tumors or into the cancer therapy is not a new bloodstream. During her studies at Cal Poly, much idea but it is currently a of her time was spent as part of the undergraduate research team for the buzzing topic in cancer Cal Poly Dairy Products Technology therapy research. Center studying spore-forming bacteria in dairy products. In the late 1800s, German Currently she is working on new physicians W. Busch and F. chromogenic media formulations for Fehleisen both individually Hardy Diagnostics, both in the observed that certain cancers prepared and powdered forms. began to regress when patients acquired accidental erysipelas (cellulitis) caused by Streptococcus pyogenes. William Coley was the first to use New York surgeon William bacterial injections to treat cancer www.HardyDiagnostics.com patients.
    [Show full text]
  • Metabolic and Genetic Basis for Auxotrophies in Gram-Negative Species
    Metabolic and genetic basis for auxotrophies in Gram-negative species Yara Seifa,1 , Kumari Sonal Choudharya,1 , Ying Hefnera, Amitesh Ananda , Laurence Yanga,b , and Bernhard O. Palssona,c,2 aSystems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122; bDepartment of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; and cNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved February 5, 2020 (received for review June 18, 2019) Auxotrophies constrain the interactions of bacteria with their exist in most free-living microorganisms, indicating that they rely environment, but are often difficult to identify. Here, we develop on cross-feeding (25). However, it has been demonstrated that an algorithm (AuxoFind) using genome-scale metabolic recon- amino acid auxotrophies are predicted incorrectly as a result struction to predict auxotrophies and apply it to a series of the insufficient number of known gene paralogs (26). Addi- of available genome sequences of over 1,300 Gram-negative tionally, these methods rely on the identification of pathway strains. We identify 54 auxotrophs, along with the corre- completeness, with a 50% cutoff used to determine auxotrophy sponding metabolic and genetic basis, using a pangenome (25). A mechanistic approach is expected to be more appropriate approach, and highlight auxotrophies conferring a fitness advan- and can be achieved using genome-scale models of metabolism tage in vivo. We show that the metabolic basis of auxotro- (GEMs). For example, requirements can arise by means of a sin- phy is species-dependent and varies with 1) pathway structure, gle deleterious mutation in a conditionally essential gene (CEG), 2) enzyme promiscuity, and 3) network redundancy.
    [Show full text]
  • Diagnostic Code Descriptions (ICD9)
    INFECTIONS AND PARASITIC DISEASES INTESTINAL AND INFECTIOUS DISEASES (001 – 009.3) 001 CHOLERA 001.0 DUE TO VIBRIO CHOLERAE 001.1 DUE TO VIBRIO CHOLERAE EL TOR 001.9 UNSPECIFIED 002 TYPHOID AND PARATYPHOID FEVERS 002.0 TYPHOID FEVER 002.1 PARATYPHOID FEVER 'A' 002.2 PARATYPHOID FEVER 'B' 002.3 PARATYPHOID FEVER 'C' 002.9 PARATYPHOID FEVER, UNSPECIFIED 003 OTHER SALMONELLA INFECTIONS 003.0 SALMONELLA GASTROENTERITIS 003.1 SALMONELLA SEPTICAEMIA 003.2 LOCALIZED SALMONELLA INFECTIONS 003.8 OTHER 003.9 UNSPECIFIED 004 SHIGELLOSIS 004.0 SHIGELLA DYSENTERIAE 004.1 SHIGELLA FLEXNERI 004.2 SHIGELLA BOYDII 004.3 SHIGELLA SONNEI 004.8 OTHER 004.9 UNSPECIFIED 005 OTHER FOOD POISONING (BACTERIAL) 005.0 STAPHYLOCOCCAL FOOD POISONING 005.1 BOTULISM 005.2 FOOD POISONING DUE TO CLOSTRIDIUM PERFRINGENS (CL.WELCHII) 005.3 FOOD POISONING DUE TO OTHER CLOSTRIDIA 005.4 FOOD POISONING DUE TO VIBRIO PARAHAEMOLYTICUS 005.8 OTHER BACTERIAL FOOD POISONING 005.9 FOOD POISONING, UNSPECIFIED 006 AMOEBIASIS 006.0 ACUTE AMOEBIC DYSENTERY WITHOUT MENTION OF ABSCESS 006.1 CHRONIC INTESTINAL AMOEBIASIS WITHOUT MENTION OF ABSCESS 006.2 AMOEBIC NONDYSENTERIC COLITIS 006.3 AMOEBIC LIVER ABSCESS 006.4 AMOEBIC LUNG ABSCESS 006.5 AMOEBIC BRAIN ABSCESS 006.6 AMOEBIC SKIN ULCERATION 006.8 AMOEBIC INFECTION OF OTHER SITES 006.9 AMOEBIASIS, UNSPECIFIED 007 OTHER PROTOZOAL INTESTINAL DISEASES 007.0 BALANTIDIASIS 007.1 GIARDIASIS 007.2 COCCIDIOSIS 007.3 INTESTINAL TRICHOMONIASIS 007.8 OTHER PROTOZOAL INTESTINAL DISEASES 007.9 UNSPECIFIED 008 INTESTINAL INFECTIONS DUE TO OTHER ORGANISMS
    [Show full text]
  • 2012 Case Definitions Infectious Disease
    Arizona Department of Health Services Case Definitions for Reportable Communicable Morbidities 2012 TABLE OF CONTENTS Definition of Terms Used in Case Classification .......................................................................................................... 6 Definition of Bi-national Case ............................................................................................................................................. 7 ------------------------------------------------------------------------------------------------------- ............................................... 7 AMEBIASIS ............................................................................................................................................................................. 8 ANTHRAX (β) ......................................................................................................................................................................... 9 ASEPTIC MENINGITIS (viral) ......................................................................................................................................... 11 BASIDIOBOLOMYCOSIS ................................................................................................................................................. 12 BOTULISM, FOODBORNE (β) ....................................................................................................................................... 13 BOTULISM, INFANT (β) ...................................................................................................................................................
    [Show full text]
  • Evolutionary Origin of Insect–Wolbachia Nutritional Mutualism
    Evolutionary origin of insect–Wolbachia nutritional mutualism Naruo Nikoha,1, Takahiro Hosokawab,1, Minoru Moriyamab,1, Kenshiro Oshimac, Masahira Hattoric, and Takema Fukatsub,2 aDepartment of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan; bBioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan; and cCenter for Omics and Bioinformatics, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561, Japan Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved June 3, 2014 (received for review May 20, 2014) Obligate insect–bacterium nutritional mutualism is among the insects, generally conferring negative fitness consequences to most sophisticated forms of symbiosis, wherein the host and the their hosts and often causing hosts’ reproductive aberrations to symbiont are integrated into a coherent biological entity and un- enhance their own transmission in a selfish manner (7, 8). Re- able to survive without the partnership. Originally, however, such cently, however, a Wolbachia strain associated with the bedbug obligate symbiotic bacteria must have been derived from free-living Cimex lectularius,designatedaswCle, was shown to be es- bacteria. How highly specialized obligate mutualisms have arisen sential for normal growth and reproduction of the blood- from less specialized associations is of interest. Here we address this sucking insect host via provisioning of B vitamins (9). Hence, it –Wolbachia evolutionary
    [Show full text]
  • Ehrlichiosis and Anaplasmosis Are Tick-Borne Diseases Caused by Obligate Anaplasmosis: Intracellular Bacteria in the Genera Ehrlichia and Anaplasma
    Ehrlichiosis and Importance Ehrlichiosis and anaplasmosis are tick-borne diseases caused by obligate Anaplasmosis: intracellular bacteria in the genera Ehrlichia and Anaplasma. These organisms are widespread in nature; the reservoir hosts include numerous wild animals, as well as Zoonotic Species some domesticated species. For many years, Ehrlichia and Anaplasma species have been known to cause illness in pets and livestock. The consequences of exposure vary Canine Monocytic Ehrlichiosis, from asymptomatic infections to severe, potentially fatal illness. Some organisms Canine Hemorrhagic Fever, have also been recognized as human pathogens since the 1980s and 1990s. Tropical Canine Pancytopenia, Etiology Tracker Dog Disease, Ehrlichiosis and anaplasmosis are caused by members of the genera Ehrlichia Canine Tick Typhus, and Anaplasma, respectively. Both genera contain small, pleomorphic, Gram negative, Nairobi Bleeding Disorder, obligate intracellular organisms, and belong to the family Anaplasmataceae, order Canine Granulocytic Ehrlichiosis, Rickettsiales. They are classified as α-proteobacteria. A number of Ehrlichia and Canine Granulocytic Anaplasmosis, Anaplasma species affect animals. A limited number of these organisms have also Equine Granulocytic Ehrlichiosis, been identified in people. Equine Granulocytic Anaplasmosis, Recent changes in taxonomy can make the nomenclature of the Anaplasmataceae Tick-borne Fever, and their diseases somewhat confusing. At one time, ehrlichiosis was a group of Pasture Fever, diseases caused by organisms that mostly replicated in membrane-bound cytoplasmic Human Monocytic Ehrlichiosis, vacuoles of leukocytes, and belonged to the genus Ehrlichia, tribe Ehrlichieae and Human Granulocytic Anaplasmosis, family Rickettsiaceae. The names of the diseases were often based on the host Human Granulocytic Ehrlichiosis, species, together with type of leukocyte most often infected.
    [Show full text]
  • Legionella Shows a Diverse Secondary Metabolism Dependent on a Broad Spectrum Sfp-Type Phosphopantetheinyl Transferase
    Legionella shows a diverse secondary metabolism dependent on a broad spectrum Sfp-type phosphopantetheinyl transferase Nicholas J. Tobias1, Tilman Ahrendt1, Ursula Schell2, Melissa Miltenberger1, Hubert Hilbi2,3 and Helge B. Bode1,4 1 Fachbereich Biowissenschaften, Merck Stiftungsprofessur fu¨r Molekulare Biotechnologie, Goethe Universita¨t, Frankfurt am Main, Germany 2 Max von Pettenkofer Institute, Ludwig-Maximilians-Universita¨tMu¨nchen, Munich, Germany 3 Institute of Medical Microbiology, University of Zu¨rich, Zu¨rich, Switzerland 4 Buchmann Institute for Molecular Life Sciences, Goethe Universita¨t, Frankfurt am Main, Germany ABSTRACT Several members of the genus Legionella cause Legionnaires’ disease, a potentially debilitating form of pneumonia. Studies frequently focus on the abundant number of virulence factors present in this genus. However, what is often overlooked is the role of secondary metabolites from Legionella. Following whole genome sequencing, we assembled and annotated the Legionella parisiensis DSM 19216 genome. Together with 14 other members of the Legionella, we performed comparative genomics and analysed the secondary metabolite potential of each strain. We found that Legionella contains a huge variety of biosynthetic gene clusters (BGCs) that are potentially making a significant number of novel natural products with undefined function. Surprisingly, only a single Sfp-like phosphopantetheinyl transferase is found in all Legionella strains analyzed that might be responsible for the activation of all carrier proteins in primary (fatty acid biosynthesis) and secondary metabolism (polyketide and non-ribosomal peptide synthesis). Using conserved active site motifs, we predict Submitted 29 June 2016 some novel compounds that are probably involved in cell-cell communication, Accepted 25 October 2016 Published 24 November 2016 differing to known communication systems.
    [Show full text]
  • Anaplasma Platys Diagnosis in Dogs
    Anaplasma platys Diagnosis in Dogs: Comparison Between Morphological and Molecular Tests Renata Fernandes Ferreira, VMD, MSc1 Aloysio de Mello Figueiredo Cerqueira, VMD, MSc, DSc2 Ananda Müller Pereira, VMD1 Cecília Matheus Guimarães BSc2 Alexandre Garcia de Sá, VMD, MSc1 Fabricio da Silva Abreu, VMD, MSc1 Carlos Luiz Massard, VMD, MSc, PhD3 Nádia Regina Pereira Almosny, VMD, MSc, PhD1 1Departamento de Patologia e Clínica Veterinária Universidade Federal Fluminense Niterói, Rio de Janeiro, Brazil 2Departamento de Microbiologia e Parasitologia Universidade Federal Fluminense Niterói, Rio de Janeiro, Brazil 3Departamento de Parasitologia Animal Universidade Federal Rural do Rio de Janeiro Seropédica, Rio de Janeiro, Brazil KEY WORDS: Anaplasma platys, PCR, ickettsia helminthoeca (PCR1). The second inclusions stage consisted of the utilization of specific primers for the detection of the species A ABSTRACT platys (PCR2). Upon comparison of the re- Anaplasma platys is related to the appear- sults, 18.81% of the studied animals showed ance of inclusion bodies in blood platelets; positive for PCR1. For PCR2, 15.84% of the however, this may be a nonspecific occur- studied animals had a positive result. In the rence as there are nonparasitic inclusion morphological analysis of the inclusion bod- bodies within these figured elements. Aiming ies, 14.85% of the animals showed positive to validate the morphological diagnosis for for A platys. The other inclusion bodies were A platys, 101 dogs were selected due to the considered as nonspecific, therefore nega- appearance of inclusion bodies, indepen- tive. When compared to the morphological dently from suggestive parasites, which analysis, the results of the molecule analysis were submitted to polymerase chain reac- by means of the MacNemar test led to the tion (PCR) carried out in 2 stages.
    [Show full text]
  • AMD Projects: Deadly Disease Databases
    CDC’s AMD Program AMD Projects Innovate • Transform • Protect CDC’s Advanced Molecular Detection (AMD) program fosters scientific innovation in genomic sequencing, epidemiology, and bioinformatics to transform public health and protect people from disease threats. AMD Project: Deadly Disease Databases Whole genome analysis and database development for anthrax (Bacillus anthracis), melioidosis (Burkholderia pseudomallei), and Brucellosis (Brucella spp.) Epidemiologists and forensic professionals can use whole genome sequencing – a way of determining an organism’s complete, detailed genome – and large databases to determine the source of dangerous germs. Having a large, accessible collection of disease pathogens could help scientists quickly find out if a certain illness is naturally occurring or the result of bioterrorism. CDC is establishing a public database where scientists from around the world can share information about these potentially deadly CDC is establishing public databases so that diseases. CDC scientists have begun sequencing the organisms that scientists from around the world can share information about deadly diseases like cause anthrax (Bacillus anthracis), brucellosis (Brucella spp.), and anthrax, brucellosis, and melioidosis. melioidosis (Burkholderia pseudomallei), three pathogens that could occur naturally or as the result of bioterrorism. Current methods of determining the genetic structure of these organisms are not standardized and sometimes not effective. Using whole genome sequencing for these pathogens will allow scientists www.cdc.gov/amd Updated: May 2017 to accurately and quickly find the geographic origin of the isolates and will improve overall knowledge and understanding of them. Having a detailed database of these genomes will also ensure quicker and more effective responses to outbreaks. For more information on anthrax, please visit www.cdc.gov/anthrax/index.html.
    [Show full text]
  • Establishment of Listeria Monocytogenes in the Gastrointestinal Tract
    microorganisms Review Establishment of Listeria monocytogenes in the Gastrointestinal Tract Morgan L. Davis 1, Steven C. Ricke 1 and Janet R. Donaldson 2,* 1 Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; [email protected] (M.L.D.); [email protected] (S.C.R.) 2 Department of Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA * Correspondence: [email protected]; Tel.: +1-601-266-6795 Received: 5 February 2019; Accepted: 5 March 2019; Published: 10 March 2019 Abstract: Listeria monocytogenes is a Gram positive foodborne pathogen that can colonize the gastrointestinal tract of a number of hosts, including humans. These environments contain numerous stressors such as bile, low oxygen and acidic pH, which may impact the level of colonization and persistence of this organism within the GI tract. The ability of L. monocytogenes to establish infections and colonize the gastrointestinal tract is directly related to its ability to overcome these stressors, which is mediated by the efficient expression of several stress response mechanisms during its passage. This review will focus upon how and when this occurs and how this impacts the outcome of foodborne disease. Keywords: bile; Listeria; oxygen availability; pathogenic potential; gastrointestinal tract 1. Introduction Foodborne pathogens account for nearly 6.5 to 33 million illnesses and 9000 deaths each year in the United States [1]. There are over 40 pathogens that can cause foodborne disease. The six most common foodborne pathogens are Salmonella, Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, and Clostridium perfringens.
    [Show full text]