T-Type Voltage Gated Calcium Channels: a Target in Breast Cancer?

Total Page:16

File Type:pdf, Size:1020Kb

T-Type Voltage Gated Calcium Channels: a Target in Breast Cancer? Breast Cancer Research and Treatment (2019) 173:11–21 https://doi.org/10.1007/s10549-018-4970-0 REVIEW T-Type voltage gated calcium channels: a target in breast cancer? Anamika Bhargava1 · Sumit Saha1 Received: 24 July 2018 / Accepted: 15 September 2018 / Published online: 21 September 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Purpose The purpose of this review article is to discuss the potential of T-type voltage gated calcium channels (VGCCs) as drug targets in breast cancer. Summary Breast cancer, attributable to the different molecular subtypes, has a crucial need for therapeutic strategies to counter the mortality rate. VGCCs play an important role in regulating cytosolic free calcium levels which regulate cellular processes like tumorigenesis and cancer progression. In the last decade, T-type VGCCs have been investigated in breast cancer proliferation. Calcium channel blockers, in general, have shown an anti-proliferative and cytotoxic effects. T-type VGCC antagonists have shown growth inhibition owing to the inhibition of Ca V3.2 isoform. Ca V3.1 isoform has been indicated as a tumour-suppressor gene candidate and is reported to support anti-proliferative and apoptotic activity in breast cancer. The distribution of T-type VGCC isoforms in different breast cancer molecular subtypes is diverse and needs to be further investigated. The role of T-type VGCCs in breast cancer migration, metastasis and more importantly in epithelial to mesen- chymal transition (EMT) is yet to be elucidated. In addition, interlaced therapy, using a combination of chemotherapy drugs and T-type VGCC blockers, presents a promising therapeutic approach for breast cancer but more validation and clinical trials are needed. Also, for investigating the potential of T-type VGCC blocker therapy, there is a need for isoform-specific agonists/antagonists to define and discover roles of T-type VGCC specific isoforms. Conclusion Our article provides a review of the role of T-type VGCCs in breast cancer and also discusses future of the research in this area so that it can be ascertained whether there is any potential of T-type VGCCs as drug targets in breast cancer. Keywords Breast cancer · Voltage gated calcium channel · T-type VGCCs · Calcium influx Introduction channels are mostly ligand-gated ion channels that open in response to a ligand and mediate cation flux [3–5]. Two main 2+ 2 + Changes in the cytosolic free Ca concentration [Cai ] rep- classes of calcium selective channels are known, namely resent an important signalling mechanism, which integrates store-operated calcium channels and voltage gated calcium other signal-transduction cascades and controls a variety channels (VGCCs) [6, 7]. Store-operated calcium channels of cellular processes [1]. Although there are many types of like Orai mediate calcium influx in response to the deple- calcium permeable ion channels like IP3 (Inositol Triphos- tion of intracellular calcium stores. VGCCs include L-type, phate) and RYR receptor (Ryanodine Receptor) isoforms N-type, T-type, R-type and P/Q-type. These ion channels expressed in the intracellular organelles [2], plasma mem- consist of different subunits, although it is the α1 subu- brane has its own share of calcium permeable ion channels nit of 190–250 kDa that forms the calcium selective pore which we can classify into calcium selective and calcium [8]. The α1 subunit also determines the type of VGCC [9]. non-selective channels (Fig. 1). Calcium non-selective ion The genes that encode the α1 subunit include CACNA1S (CaV1.1), CACNA1C (CaV1.2), CACNA1D (CaV1.3) and CACNA1F (CaV1.4) for L-type calcium channels; CACNA1A * Anamika Bhargava (CaV2.1), CACNA1B (CaV2.2) and CACNA1E (CaV2.3) for [email protected] P-/Q-type, N-type and R-type calcium channels respectively; 1 and CACNA1G (Ca 3.1), CACNA1H (Ca 3.2) and CAC- Ion Channel Biology Lab, Department of Biotechnology, V V Indian Institute of Technology Hyderabad (IITH), Kandi, NA1I (CaV3.3) for T-type calcium channel isoforms [10]. Telangana 502285, India Vol.:(0123456789)1 3 12 Breast Cancer Research and Treatment (2019) 173:11–21 Fig. 1 Calcium influx chan- nels on the plasma membrane. Calcium selective channels comprise of Orai and CaV family. Calcium non-selective channels comprise of P2X, 5-HT3 receptor, TRP channels, NMDA, AMPA and kainate receptors. NMDA, AMPA and kainate receptors are predomi- nantly found in neurons Although VGCCs have important roles in the excitability of CaV1 (L-type) and CaV2 (P/Q, N and R-type) channels but excitable cells, such as those in the central nervous system they are only ∼ 25% identical in the amino acid sequence [9]. and cardiovascular tissue, they are also expressed in non- Currents through T-type α1 subunit are similar to currents excitable cell types where they perform a variety of cellular through native T-type VGCCs, suggesting that the β, α2δ and functions. In the last decade, they have also been implicated γ subunits may have alternative roles [17]. The alternative in cancer cells where they have been found to both promote roles of auxiliary subunits have recently been reviewed by or inhibit proliferation depending on the type of cancer and Hofmann et al. [18] which also includes essential physi- the type of ion channel isoform expressed [11]. ological processes. VGCCs have been reported as promising target can- T-type VGCCs perform various functions such as atrial didates in cancer therapy [12]. Among VGCCs, T-type pacemaking, low-threshold exocytosis, neuronal firing, G1/S VGCCs are being suggested as a promising target as they checkpoint regulation, cell proliferation, atrioventricular have been reported to be upregulated in many cancer types. regulation etc. [20–25]. T-type VGCCs are therefore impli- For detailed information on the role of T-type VGCCs in cated in several pathologies including autism, hypertension, cancer growth and progression, please see reviews [13–15]. epilepsy and cancer. Because of the extreme importance of Our review is focussed on the role of T-type VGCCs in T-type VGCCs and their abundant expression in the nervous breast cancer and future opportunities therein to validate system, a major disease that involves the T-type VGCC as a them as potential drug targets in breast cancer. In this review drug target is absence epilepsy. Experiments on the GAERS we have covered (1) The data indicating the role of T-type (Genetic Absence Epilepsy Rat of Strasbourg) mice showed VGCCs in breast cancer and (2) The scope of research in this that there was a marked increase in the activity of Ca V3.2 area to elucidate the direct/ indirect role of T-type VGCCs in isoform of T-type VGCCs which triggers the burst firing breast cancer regulation. We have reviewed the involvement of thalamic neurons in epilepsy seizure [26]. The Ca V3.2 of T-type VGCCs in breast cancer among the vast number of isoform of T-type VGCCs is also reported to be upregu- cancers due to the following reasons: (1) Breast cancer has lated in visceral and neuropathic pain [27] in animal models, a huge mortality rate, (2) Due to varied molecular subtypes, where CaV3.2 contributes to the perception of pain and is prognosis and therapy is a challenge in breast cancer and (3) regarded as a viable drug target. The evidence of involve- Reports regarding the role of T-type VGCCs in breast cancer ment of T-type VGCCs in the manifestation of diseases such are insufficient, inconclusive and non-specific to come up as cardiovascular diseases, renal injury and different human with definitive therapies. cancers such as breast, colon, prostate, leukaemia, ovarian and melanoma is supported by their over/re-expression in T‑type voltage gated calcium channels cancerous and diseased tissue as compared to the normal tissue [24, 28–34]. Various studies have also indicated their Originally, Hagiwara and colleagues described two inward supportive role in cancer proliferation, survival and cell- currents, labelled I and II, in starfish eggs which were both cycle regulation in cancer progression. However, a clear calcium influx currents [16]. Today, “I” and “II” are widely casual or consequential relationship of T-type VGCCs with recognized as high-voltage activated (HVA) and low-volt- the various above said diseases is not well established. age activated (LVA) channels respectively. T-type VGCCs belong to the family of LVA channels [17]. Three isoforms Breast carcinoma of the T-type (CaV3) VGCC α1 subunit have been discovered by cDNA cloning and sequencing (Table 1). These calcium Breast cancer is emerging as the most common female channel subunits have the same molecular organization as cancer worldwide which, according to the World Cancer 1 3 Breast Cancer Research and Treatment (2019) 173:11–21 13 Table 1 T-Type voltage gated calcium channel properties. adapted from [17, 19] T-Type VGCCs CaV3.1 CaV3.2 CaV3.3 Other names α13.1, α1G α13.2, α1H α13.3, α1I Molecular information Human: 2377aa, O43497, chr. Human: 2353aa, O95180, chr. Human: 2251aa, AAM67414, chr. 17q22, CACNA1G 16p13.3, CACNA1H 22q13.1, CACNA1I Ion selectivity Sr2+ > Ba2+ = Ca2+ Ba2+ = Ca2+ Ba2+ = Ca2+ Blockers Selective: NNC 55 0396 Selective: NNC 55 0396 Selective: NNC 55 0396 Non-selective: Nickel, Mibefradil, Non-selective: Nickel, Mibefradil, Non-selective: Nickel, Mibefradil Nimopidine and Amiloride Nimopidine and anaesthetics Note CaV3.2 is more sensitive than CaV3.1 to block by nickel (IC50 = 12 µl) Functional assays Patch-clamp, calcium imaging Patch-clamp, calcium imaging Patch-clamp, calcium imaging Channel Distribution (in general) Brain, Ovary, Placenta, Heart Kidney, Liver, Adrenal cortex, Brain Brain, Heart Physiological function Thalamic oscillations, muscle Thalamic oscillations, muscle Thalamic oscillations, muscle contraction contraction contraction T-type VGCCs can be divided into three subclasses: CaV3.1, CaV3.2 and CaV3.3 Currently, the only major means of restricting mortal- Table 2 Breast cancer subtypes with their specific endocrine receptor ity in breast cancer is early screening [43].
Recommended publications
  • Cancer Drug Pharmacology Table
    CANCER DRUG PHARMACOLOGY TABLE Cytotoxic Chemotherapy Drugs are classified according to the BC Cancer Drug Manual Monographs, unless otherwise specified (see asterisks). Subclassifications are in brackets where applicable. Alkylating Agents have reactive groups (usually alkyl) that attach to Antimetabolites are structural analogues of naturally occurring molecules DNA or RNA, leading to interruption in synthesis of DNA, RNA, or required for DNA and RNA synthesis. When substituted for the natural body proteins. substances, they disrupt DNA and RNA synthesis. bendamustine (nitrogen mustard) azacitidine (pyrimidine analogue) busulfan (alkyl sulfonate) capecitabine (pyrimidine analogue) carboplatin (platinum) cladribine (adenosine analogue) carmustine (nitrosurea) cytarabine (pyrimidine analogue) chlorambucil (nitrogen mustard) fludarabine (purine analogue) cisplatin (platinum) fluorouracil (pyrimidine analogue) cyclophosphamide (nitrogen mustard) gemcitabine (pyrimidine analogue) dacarbazine (triazine) mercaptopurine (purine analogue) estramustine (nitrogen mustard with 17-beta-estradiol) methotrexate (folate analogue) hydroxyurea pralatrexate (folate analogue) ifosfamide (nitrogen mustard) pemetrexed (folate analogue) lomustine (nitrosurea) pentostatin (purine analogue) mechlorethamine (nitrogen mustard) raltitrexed (folate analogue) melphalan (nitrogen mustard) thioguanine (purine analogue) oxaliplatin (platinum) trifluridine-tipiracil (pyrimidine analogue/thymidine phosphorylase procarbazine (triazine) inhibitor)
    [Show full text]
  • In Vivo Characterization of Combination Antitumor Chemotherapy with Calcium Channel Blockers and Ci5-Diamminedichloroplatinum(II)1
    (CANCER RESEARCH 49, 2844-2850. June 1, 1989] In Vivo Characterization of Combination Antitumor Chemotherapy with Calcium Channel Blockers and ci5-Diamminedichloroplatinum(II)1 James M. Onoda,2 Kevin K. Nelson, John D. Taylor, and Kenneth V. Honn Departments of Radiation Oncology [J. M. O., K. K. N., J. D. T., K. V. H.], Biological Sciences [J. D. T.], and Chemistry ¡K.V. H.], Wayne State University, Detroit, Michigan 48202; and the Cershenson Radiation Oncology Center [J. M. O., K. K. N., J. D. T., K. V. H.], Harper/Grace Hospitals, Detroit, Michigan 4820I ABSTRACT dulin antagonists to enhance the antitumor actions of the more We have examined nifedipine, a dihydropyridine class calcium channel commonly prescribed organic or natural product chemothera blocker, for ability to overcome m-diamminedichloroplatinum(II) (cis- peutic agents (3, 4). The ability of verapamil to reverse multi- platin) resistance in a murine tumor line variant, B16a-Pt, which we drug resistance or pleiotropic drug resistance correlates with developed for resistance to cisplatin. Nifedipine significantly enhanced the expression of a M, 170,000 glycoprotein in drug-resistant the antitumor actions of cisplatin against primary subcutaneous B16a-Pt tumor cell plasma membranes (5, 6). This glycoprotein is now tumors and their spontaneous pulmonary métastases.We have charac commonly referred to as the P-glycoprotein (7, 8) and is re terized, in vivo, the pharmacokinetics and dose-response interactions sponsible for the active efflux of many organic/natural product between nifedipine and cisplatin. We now report our studies designed to cytotoxic chemotherapeutic agents (9-11). The current hypoth compare, in vivo, the efficacy of nifedipine and other calcium active esis suggests that verapamil interacts with the P-glycoprotein compounds including: (a) structurally similar calcium channel blockers to block drug efflux (12, 13); and that its actions are independ (nimodipine, nicardipine) from the dihydropyridine class, (b) structurally ent of the classical slow-inward Ca2+ channel (14, 15).
    [Show full text]
  • Effect of Amlodipine and Indomethacin in Electrical and Picrotoxin Induced Convulsions in Mice
    DOI: 10.5958/2319-5886.2014.00402.0 International Journal of Medical Research & Health Sciences www.ijmrhs.com Volume 3 Issue 3 Coden: IJMRHS Copyright @2014 ISSN: 2319-5886 Received: 9th Apr 2014 Revised: 3rd Jun 2014 Accepted: 14th Jun 2014 Research Article EFFECT OF AMLODIPINE AND INDOMETHACIN IN ELECTRICAL AND PICROTOXIN INDUCED CONVULSIONS IN MICE *Jagathi Devi N1, Prasanna V2 1Assistant Professor, 2Professor and Head, Department of Pharmacology, Osmania Medical College, Hyderabad *Corresponding author email: [email protected] ABSTRACT Background and Objectives: Antiepileptic drugs (AEDs) are the drugs used in the treatment of epilepsy. Many AEDs have been developed, but the ideal AED which can not only prevent but also abolish seizures by correcting the underlying pathophysiology is still not in sight. Calcium channel blockers (CCBs) may form such a group, as the initiation of epileptogenic activity in the neuron is connected with a phenomenon known as “intrinsic burst firing” which is activated by inward calcium current. In this study, Amlodipine, a CCB of the dihydropyridine class was evaluated for its anticonvulsant activity in mice. It was compared with Phenytoin sodium, one of the oldest anti epileptic drugs. Amlodipine was also combined with Indomethacin, a conventional NSAID, to look for any potentiating effect of this prostaglandin-synthesis inhibitor. Materials and Methods: A total of 48 adult Swiss albino mice of either sex weighing 20-30 G were used for this study; 48 were divided into 8 groups, each group containing 6 mice. Group 1-4 MES (50 m Amp for 0.1 secs) induced convulsion method, Group 5-8 evaluated by using the chemo-convulsant, picrotoxin (0.7 mg / kg).
    [Show full text]
  • Neurochemical Mechanisms Underlying Alcohol Withdrawal
    Neurochemical Mechanisms Underlying Alcohol Withdrawal John Littleton, MD, Ph.D. More than 50 years ago, C.K. Himmelsbach first suggested that physiological mechanisms responsible for maintaining a stable state of equilibrium (i.e., homeostasis) in the patient’s body and brain are responsible for drug tolerance and the drug withdrawal syndrome. In the latter case, he suggested that the absence of the drug leaves these same homeostatic mechanisms exposed, leading to the withdrawal syndrome. This theory provides the framework for a majority of neurochemical investigations of the adaptations that occur in alcohol dependence and how these adaptations may precipitate withdrawal. This article examines the Himmelsbach theory and its application to alcohol withdrawal; reviews the animal models being used to study withdrawal; and looks at the postulated neuroadaptations in three systems—the gamma-aminobutyric acid (GABA) neurotransmitter system, the glutamate neurotransmitter system, and the calcium channel system that regulates various processes inside neurons. The role of these neuroadaptations in withdrawal and the clinical implications of this research also are considered. KEY WORDS: AOD withdrawal syndrome; neurochemistry; biochemical mechanism; AOD tolerance; brain; homeostasis; biological AOD dependence; biological AOD use; disorder theory; biological adaptation; animal model; GABA receptors; glutamate receptors; calcium channel; proteins; detoxification; brain damage; disease severity; AODD (alcohol and other drug dependence) relapse; literature review uring the past 25 years research- science models used to study with- of the reasons why advances in basic ers have made rapid progress drawal neurochemistry as well as a research have not yet been translated Din understanding the chemi- reluctance on the part of clinicians to into therapeutic gains and suggests cal activities that occur in the nervous consider new treatments.
    [Show full text]
  • The Immunosuppressive Effects of Long-Term Combination Chemotherapy in Children with Acute Leukemia Inremission1
    [CANCER RESEARCH 31, 420-426, April 1971] The Immunosuppressive Effects of Long-Term Combination Chemotherapy in Children with Acute Leukemia in Remission1 Luis Borella and Robert G. Webster Laboratories of Virology and Immunology, St. Jude Children 'sResearch Hospital, Memphis, Tennessee 38101 SUMMARY effects of prolonged maintained combination chemotherapy upon immunocompetence have not been investigated. The immunosuppressive effects of maintenance Knowledge of the immunosuppressive effects of long-term combination chemotherapy given for periods ranging from 8 combination chemotherapy is now urgently needed because of to 28 months to 20 children with acute lymphocytic leukemia the increasing number of prolonged remissions and potential in remission were investigated. There was depression of both 5-year cures among children with acute lymphocytic leukemia the primary antibody production to the hemagglutinin antigen receiving this form of treatment (19). of the Hong Kong influenza virus and the anamnestic response This study was aimed at determining the to the neuraminidase of the same virus. The primary response immunosuppressive effects of long-term combination (hemagglutination inhibition) was affected to a greater extent chemotherapy in children with acute lymphocytic leukemia. than the secondary (neuraminidase inhibition) response. A Several unique features of this investigation were as follows. preferential depression of 2-mercaptoethanol-resistant (a) All patients were in remission and received the same hemagglutination inhibition antibodies (IgG) was also combination chemotherapy continuously for periods ranging observed. One-fourth of all acute lymphocytic leukemia from 8 to 28 months, (b) Patients and controls were patients had low serum IgG levels. In vitro transformation of immunized with the Hong Kong influenza virus vaccine prior lymphocytes was a poor index of immunocompetence.
    [Show full text]
  • Anaesthetic Implications of Calcium Channel Blockers
    436 Anaesthetic implications of calcium channel Leonard C. Jenkins aA MD CM FRCPC blockers Peter J. Scoates a sc MD FRCPC CONTENTS The object of this review is to emphasize the anaesthetic implications of calcium channel block- Physiology - calcium/calcium channel blockers Uses of calcium channel blockers ers for the practising anaesthetist. These drugs have Traditional played an expanding role in therapeutics since their Angina pectoris introduction and thus anaesthetists can expect to see Arrhythmias increasing numbers of patients presenting for anaes- Hypertension thesia who are being treated with calcium channel Newer and investigational Cardiac blockers. Other reviews have emphasized the basic - Hypertrophic cardiomyopathy pharmacology of calcium channel blockers. 1-7 - Cold cardioplegia - Pulmonary hypertension Physiology - calcium/calcium channel blockers Actions on platelets Calcium plays an important role in many physio- Asthma Obstetrics logical processes, such as blood coagulation, en- - Premature labor zyme systems, muscle contraction, bone metabo- - Pre-eclampsia lism, synaptic transmission, and cell membrane Achalasia and oesophageal spasm excitability. Especially important is the role of Increased intraocular pressure therapy calcium in myocardial contractility and conduction Protective effect on kidney after radiocontrast Cerebral vasospasm as well as in vascular smooth muscle reactivity. 7 Induced hypotensive anaesthesia Thus, it can be anticipated that any drug interfering Drag interactions with calcium channel blockers with the action of calcium could have widespread With anaesthetic agents effects. Inhalation agents In order to understand the importance of calcium - Effect on haemodynamics - Effect on MAC in cellular excitation, it is necessary to review some Neuromuscular blockers membrane physiology. Cell membranes are pri- Effects on epinephrine-induced arrhythmias marily phospholipids arranged in a bilayer.
    [Show full text]
  • Mtorc1/2 Inhibition Preserves Ovarian Function and Fertility During Genotoxic Chemotherapy
    mTORC1/2 inhibition preserves ovarian function and fertility during genotoxic chemotherapy Kara N. Goldmana, Devon Chenetteb, Rezina Arjub, Francesca E. Duncanc, David L. Keefea, Jamie A. Grifoa, and Robert J. Schneiderb,d,1 aDivision of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, New York University School of Medicine, New York,NY 10016; bDepartment of Microbiology, New York University School of Medicine, New York, NY 10016; cDepartment of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and dPerlmutter Cancer Center, New York University School of Medicine, New York, NY 10016 Edited by Nahum Sonenberg, McGill University, Montreal, QC, Canada, and approved February 8, 2017 (received for review October 17, 2016) The ovary contains oocytes within immature (primordial) follicles pathway, leading to primordial follicle activation and follicular that are fixed in number at birth. Activation of follicles within this “burnout” (6, 7). fixed pool causes an irreversible decline in reproductive capacity, Ovarian folliculogenesis initiates from the primordial follicle known as the ovarian reserve, until menopause. Premenopausal stage, where an oocyte arrested in prophase of meiosis I and women undergoing commonly used genotoxic (DNA-damaging) surrounded by a single layer of squamous granulosa cells is ac- chemotherapy experience an accelerated loss of the ovarian tivated to grow and transition to a primary follicle, secondary reserve, leading to subfertility and infertility. Therefore, there is follicle, and then ultimately a preovulatory antral follicle (Fig. considerable interest but little effective progress in preserving S1). Most oocytes within the ovary exist in a quiescent state ovarian function during chemotherapy. Here we show that block- within primordial follicles, relatively resistant to antimitotic and ing the kinase mammalian/mechanistic target of rapamycin genotoxic agents (8, 9).
    [Show full text]
  • Introduction to Chemotherapy
    2/21/2017 Principles of Chemotherapy EUGENE R. PRZESPOLEWSKI, PHARM.D. BCOP THE JONAH CENTER FOR ONCOLOGY AND HEMATOLOGY ERIE COUNTY MEDICAL CENTER Biology 101 2 Cancer is a complex disease caused by genetic and epigenetic mutations Simply, it is only unregulated cell division “Traditional” chemotherapy highjacks mechanisms of mitosis Understanding chemotherapy needs understanding of Biology 101* * Of course it gets complicated Chemotherapy 3 Merriam-Webster: Chemotherapy: noun: che・mo・ther・a・py Medical: The use of chemical agents in the treatment or control of disease (such as cancer) or mental illness Word originated around 1910 by Paul Ehrlich Developed the first treatment for syphilis, antiserum for diphtheria (Nobel prize in 1908) He also developed the concept of “magic bullet” In the world of pharmacology chemotherapy can be used to treat: Infectious disease Cancer 1 2/21/2017 History of Chemotherapy Begins… 4 World War II 5 Nitrogen Mustards were taboo and not used in battle, however Ready to be used (feared Hitler would use when he was pushed) Bomb raid on Bari, Italy on December 2nd, 1943 Sailors exposed had depletion of bone marrow stores and lymph nodes Goodman and Gilman at Yale discovered murine models with lymphomas responded to nitrogen mustard therapy Convinced a surgeon to treat a single NHL patient with a nitrogen mustard Original trial done in 1943, but data kept secret until 1946 The Lesson of the 1940s 6 Nitrogen Mustards: Alkylation of guanine nucleotides in DNA causing inhibition of cell division
    [Show full text]
  • Double Autophagy Stimulation Using Chemotherapy and Mtor Inhibition Combined with Hydroxychloroquine for Autophagy Modulation In
    LETTERS TO THE EDITOR AKT- mTOR signaling pathway both serves as a potential Double autophagy stimulation using chemotherapy resistance mechanism to cytotoxic chemotherapy in and mTOR inhibition combined with myeloma10 and when inhibited, induces autophagy,11 we hydroxychloroquine for autophagy modulation in hypothesized that adding rapamycin to standard alkylat- patients with relapsed or refractory multiple ing agent cyclophosphamide would ‘doubly’ induce myeloma autophagy, providing an improved platform for the addi- tion of an autophagy inhibitor. We conducted a safety pilot and phase I study with the primary objective to Multiple myeloma is an incurable plasma cell neoplasm determine the maximum tolerated dose (MTD) of for which novel agents have improved outcomes but hydroxychloroquine and safety of the 4-drug combina- therapeutic resistance is inevitable. Infusional cytotoxic tion. chemotherapy is an effective cytoreductive strategy for Adults with relapsed or refractory multiple myeloma aggressive relapse but is not curative.1 The autophagy were eligible for the study if they had received prior pathway is a lysosome-dependent degradative pathway lenalidomide, bortezomib (Table 1). Full eligibility criteria frequently activated in tumor cells treated with are provided in the Online Supplementary Appendix. This chemotherapy or radiation that mediates therapeutic was a 2-stage study: the 1st stage was an open label single resistance2 (Online Supplementary Figure S1) as it is a center pilot study (July 2011-June 2012; Abramson reversible adaptive response that allows cancer cells to Cancer Center, clinicaltrials.gov identifier: 01396200) to survive therapy-induced apoptosis.3 Autophagy inhibi- establish the safety of adding rapamycin and hydroxy- tion with hydroxychloroquine, which blocks the clear- chloroquine individually to backbone chemotherapy ance of autophagic vesicles,4 can augment the cytotoxici- (n=6).
    [Show full text]
  • Dental Management for the Hypertensive Patient
    HYPERTENSION AND ORAL HEALTH: EPIDEMIOLOGIC AND CLINICAL PERSPECTIVES Janet H Southerland, DDS, MPH, PhD Professor, Department of Oral and Maxillofacial Surgery School of Dentistry, Meharry Medical College December 9, 2016 Provide an overview of concerns with treating patients with hypertension and GOAL provide recommendations that will be helpful in managing a broad spectrum of these patients. EVALUATION Evaluation for hypertension has three objectives: 1. to assess lifestyle and identify other cardiovascular risk factors or concomitant disorders that may affect prognosis and guide treatment. 2. to reveal identifiable causes of high BP. 3. to assess the presence or absence of target organ damage and cardiovascular disease (CVD). TARGET ORGAN DAMAGE Heart Left ventricular hypertrophy Angina or prior myocardial infarction Prior coronary revascularization Heart Failure Brain Stroke or transient ischemic attack Chronic kidney disease Peripheral artery disease Retinopathy The relationship between BP and risk of CVD events is continuous, consistent, and independent of other risk factors. The higher the BP, the greater is the chance of heart attack, heart failure, stroke, and kidney disease. INTRODUCTION The risk of developing CVD doubles for every increment of 20 mm Hg Systolic (SBP) or 10 mm Hg of Diastolic (DBP). The risk of dying of ischemic heart disease and stroke increases progressively and linearly when blood pressure exceeds 115/75 mm Hg. The 7th and 8th Joint National Committee (JNC-7 and 8) reports provide guidelines for blood pressure management and treatment. The JNC-8 panel confirms that the >140/90 mmHg definition for hypertension from the INTRODUCTION JNC 7 report remains the standard for diagnosis for individuals who do not have additional comorbidities.
    [Show full text]
  • Mtor Inhibition Sensitizes Gastric Cancer to Alkylating Chemotherapy in Vivo
    ANTICANCER RESEARCH 28 : 3801-3808 (2008) mTOR Inhibition Sensitizes Gastric Cancer to Alkylating Chemotherapy In Vivo DANIEL CEJKA 1, MATTHIAS PREUSSER 2, THORSTEN FUEREDER 1, WOLFGANG SIEGHART 1, JOHANNES WERZOWA 1, SABINE STROMMER 1 and VOLKER WACHECK 1 1Section of Experimental Oncology/Molecular Pharmacology, Department of Clinical Pharmacology, and 2Department of Internal Medicine I, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria Abstract. Background: Gastric cancer is a highly high dose of cyclophosphamide shows synergistic antitumor chemoresistant tumor. Previous studies suggest that cancer activity against gastric cancer in vivo. In potential future cells can be sensitized to standard chemotherapy, and clinical trials, the toxicity of cyclophosphamide in combination especially alkylating agents, by inhibition of mammalian target regimens with everolimus deserves careful evaluation. of rapamycin (mTOR) signaling. The work presented here shows that the mTOR inhibitor everolimus, in combination The mammalian target of rapamycin (mTOR) pathway has with cyclophosphamide, exhibit s synergistic antitumor activity become a major focus of preclinical and clinical cancer in gastric cancer xenografts. Materials and Methods: research (1). Rapamycin inhibits the kinase activity of mTOR, Treatment with everolimus at the minimal effective dose was which has been shown to result in G1 arrest, apoptosis or studied in combination with cyclophosphamide at maximum autophagy, depending on cell type studied (2-4). In gastric tolerated dose in a human gastric cancer severe combined cancer, mTOR activity and components of the mTOR immunodeficient (SCID) mouse xenograft model. Besides signaling network including PTEN, 4E-BP1 and eIF-4 are tumor size, biomarker expression for proliferation (Ki-67), deregulated and correlate with progression of disease, hypoxia (HIF-1α), apoptosis (activated caspase 3), metastasis, and inferior survival (5-9).
    [Show full text]
  • Oral Chemotherapy Drug List
    Oral Chemotherapy Drug List (Lista de medicinas para quimioterapia oral) Current (corriente) 10/1/21 Brand versions may not be covered when generics are available, Please check your medication guide (Es posible que las versiones de marca no estén cubiertas cuando hay genéricos disponibles. Consulte su guía de medicamentos) Afinitor imatinib Soltamox Afinitor Disperz Imbruvica Sprycel Alecensa Inlyta Stivarga Alkeran (melphalan) Inqovi Sutent Alunbrig Inrebic Tabloid (thioguanine) anastrozole Iressa Tabrecta Ayvakit Jakafi Tafinlar Balversa Kisqali Tagrisso Bosulif Koselugo Talzenna Braftovi Lenvima tamoxifen Brukinsa leucovorin calcium Tarceva Cabometyx Leukeran Targretin (bexarotene) Calquence Lonsurf Tasigna capecitabine Lorbrena Tazverik Caprelsa Lumakras Temodar (temozolomide) Casodex (bicalutamide) Lynparza Tepmetko CEENU (lomustine) Lysodren Thalomid Cometriq Matulane Tibsovo Copiktra Megace (megesterol) Tretinoin Cotellic Mekinist Trexall Cytoxan (cyclophosphamide) Mektovi Truseltiq Daurismo mercaptopurine Tukysa Droxia (hydroxyurea) methotrexate oral Turalio Emcyt Myleran Tykerb Erivedge Nerlynx Ukoniq Erleada Nexavar Venclexta exemestane Nilandron (nilutamide) Verzenio Eulexin (flutamide) Ninlaro Vitrakvi Evista (raloxifene) Nubeqa Vizimpro Fareston Odomzo Votrient Farydak Onureg Xalkori Femara (letrozole) Orgovyx Xospata Fotivda Pemazyre Xpovio Gavreto Piqray Xtandi Gilotrif Pomalyst Yonsa Gleostine Purixan Zejula Hexalen Qinlock Zelboraf Hycamtin Retevmo Zolinza Hydrea (hydroxyurea) Revlimid Zortress Ibrance Rozlytrek Zydelig Iclusig Rubraca Zykadia Idhifa Rydapt Zytiga Generics = lower case Brands = CAPITAL LETTERS (Genéricos = letras minúscula Marca = LETRAS MAYÚSCULA) Florida Blue is an Independent Licensee of the Blue Cross and Blue Shield Association Page 1 of 1 .
    [Show full text]