Vertebral Artery Compression of the Medulla

Total Page:16

File Type:pdf, Size:1020Kb

Vertebral Artery Compression of the Medulla ORIGINAL CONTRIBUTION Vertebral Artery Compression of the Medulla Sean I. Savitz, MD; Michael Ronthal, MD; Louis R. Caplan, MD Background: Intracranial arteries in the subarachnoid Results: We found that compression most commonly oc- space may compress the brain parenchyma and cranial curs at the ventrolateral surface. The clinical features can nerves. Most arterial compressive lesions have been attrib- be transient or permanent and are predominantly motor uted to dolichoectasia in the vertebral-basilar system, and and cerebellar or vestibular, but a poor correlation exists prior reports have concentrated on the pressure effects of between the clinical findings and the severity or extent of basilar artery ectasia. Much less is known about vertebral impingement. The vertebral arteries were angulated, tor- artery compression of the medulla. tuous, or dilated but not necessarily dolichoectatic to cause obvious indentation. Seven patients were treated with an- Objective: To describe a series of patients with verte- tiplatelets and anticoagulants or analgesics, whereas 2 un- bral arteries compressing the medulla oblongata. derwent microvascular decompression, resulting in tem- porary or no relief. One surgical patient developed cranial Design: Prospective case studies. nerve complications. Among the medically treated pa- tients, none had progression of deficits, and those with single Setting: Tertiary care center. episodes had no recurrence of symptoms. Conclusion: This study is the largest collection, to our Patients: Nine symptomatic patients, 4 men and 5 knowledge, of patients with medullary vascular com- women, between the ages of 32 and 79 years. pression. Further studies are needed to estimate its fre- quency, natural course, and preferred management. Main Outcome Measures: Clinical phenomena, ra- diographic findings, treatment, and outcomes. Arch Neurol. 2006;63:234-241 EREBRAL ARTERIES IN THE ated by at least 1 of the authors, including clini- subarachnoid space may cal phenomena, radiographic findings, treat- generate pressure and dis- ment, and outcome. All patients underwent tortion of the brain paren- magnetic resonance imaging (MRI) and mag- chyma and stretching of netic resonance angiography. The main inclu- sion criterion was obvious medullary compres- Cthe cranial nerves. Most intracranial arte- sion by a vertebral artery, which was ectatic, rial compressive lesions have been attrib- tortuous, or dilated. Patients were excluded if uted to dolichoectasia, which refers to di- they had dolichoectasia of the basilar artery or lation, enlargement, and tortuosity of if they had other brain or vascular imaging find- vessels.1 Within the cervicocranial arter- ings that better explained their symptoms and ies, dilatative arteriopathy preferentially in- signs. None of the patients had vascular occlu- volves the vertebrobasilar system. Past re- sive lesions above the vertebral arteries in the pos- ports have emphasized basilar artery ectasia terior or anterior circulation. compressing the pons and cranial nerves ex- iting the pons, causing trigeminal neural- RESULTS gia and hemifacial spasm2-4 and also caus- 3,5 6,7 ing pontine infarcts. Other reports have DEMOGRAPHICS described the general features and clinical symptoms of vertebrobasilar dolichoecta- The clinical characteristics of the 9 pa- sia. Compression of the medulla by dilated tients are summarized in Table 1. There and/or tortuous vertebral arteries is less well were 4 men and 5 women. Ages ranged from known. We report herein a series of pa- 32 to 79 years. There was a bimodal age dis- tients with vertebral arteries compressing the tribution at initial symptom presentation. medulla oblongata. Four patients developed their first symp- Author Affiliations: toms in their 30s, and 5 patients first pre- Department of Neurology, METHODS sented at older than 60 years. There were 8 Beth Israel Deaconess Medical white individuals and 1 African American Center, Harvard Medical From 1998 to 2004, we prospectively collected individual. None of the patients had large School, Boston, Mass. information on 9 symptomatic patients evalu- artery occlusive lesions. (REPRINTED) ARCH NEUROL / VOL 63, FEB 2006 WWW.ARCHNEUROL.COM 234 ©2006 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 Table 1. Clinical Features and Radiologic Findings Patient No./ Sex/Age, y Medical Conditions Symptoms Neurologic Examination Result Location of Medullary Compression 1/M/71 Hypertension Tinnitus Normal Left lateral surface and pyramid 2/M/79 Hypertension Left leg weakness for 5 min Normal Left lateral surface and pyramid 3/F/35 None Throbbing headaches Normal Tortuous artery indenting on lateral surface and pyramid 4/M/68 Hypertension Sudden 20-s imbalance, Normal Left lateral surface, base, and pyramid veering to the right 5/F/63 Hypertension, DM Sudden left leg tingling Left hemiparesis Right lateral surface, base, and gradual weakness of left and adjacent T2 hyperintensity arm and leg for 3 wk in right medial medulla 6/F/34 None Multiple episodes of Normal Tortuous left vertebral compression unsteadiness, aural fullness, on left side at the base tinnitus, nausea, headache and tegmenta-basal junction 7/F/32 None Hoarseness and dysphagia Vocal cord paralysis, asymmetric S-shaped left vertebral pressing on left lateral left palate elevation surface at middle aspect, sparing pyramids 8/F/63 Hypertension Left arm tingling and left leg Left limb hyperreflexia Left lateral and basilar surface weakness for 2 d 9/F/32 None Episodes of headache, vertigo, LOC Torsional nystagmus to the left, Tortuous, dilated left vertebral compression reduced left corneal reflex on left middle basilar part and pyramid Abbreviations: DM, diabetes mellitus; LOC, loss of consciousness. CLINICAL PHENOTYPES The symptoms and signs of each patient at initial evalu- ation are summarized in Table 1. Three patients had a single episode of symptoms that did not recur, 4 pa- tients had multiple recurrent episodes, and 2 patients sus- tained permanent deficits. Three patients presented with motor limb weakness, 2 ipsilateral and 1 contralateral to the side of compression; 3 patients had vertigo or gait ataxia; 1 patient had hoarseness, vocal cord paralysis, and abnormal palate elevation ipsilateral to the side of com- pression; 1 patient had isolated tinnitus; and 1 patient had only throbbing headaches. BRAIN IMAGING Both MRI and magnetic resonance angiography were performed in all 9 patients. The findings are summa- rized alongside the clinical features in Table 1. Com- pression was present mostly along the lateral surface and involved the pyramids in all patients but the tegmentum in only 1 patient (Figures 1, 2, 3, 4, 5, and 6). All except 1 patient had compression by the left vertebral artery, indenting on the left surface of the Figure 1. A 79-year-old man suddenly developed left leg weakness while medulla. Only 1 patient (patient 5; Figure 4) had a walking. He leaned on a family member for support until the weakness right vertebral artery that compressed the right medul- resolved 5 minutes after onset. Magnetic resonance imaging showed a left lary surface. This patient also had increased signal on vertebral artery pressing on the anterolateral left surface of the medulla. T2-weighted imaging studies within the right medial medulla, representing either wallerian degeneration or damage from branch artery occlusion or compression hoarseness but developed cranial nerve complications and (Figure 4C). Of note, 3 patients had MRIs that showed occipital neuralgia. Patient 9 had temporary relief of symp- enlarged cisterns (Figures 3, 5, and 6). toms, but episodes recurred 4 months after surgery. The 3 patients with single transient episodes treated conser- TREATMENT AND CLINICAL COURSE vatively have not had recurrences to date. Six patients were treated conservatively with analgesics, REPORT OF CASES antiplatelets, and anticoagulants, whereas 2 patients had decompressive surgery (patients 7 and 9 in Table 2). We describe 2 patients to illustrate different clinical Patient 7 had slight postoperative improvement of her features. (REPRINTED) ARCH NEUROL / VOL 63, FEB 2006 WWW.ARCHNEUROL.COM 235 ©2006 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 A B Figure 2. A 35-year-old woman developed throbbing headaches, although the results of a neurologic examination were normal. Magnetic resonance imaging showed impingement of the left anterolateral surface (A) by an angulated left vertebral artery (B). A B Figure 3. A 68-year-old man developed sudden onset of ataxia, veering to the right, and vertigo for 20 seconds. Magnetic resonance imaging showed severe indentation (A) and displacement to the right of the medulla (B). Patient 4 approximately 20 seconds and did not recur. His neuro- logic examination results were normal. An MRI was ob- A 58-year-old man with hypertension suddenly lost his tained the following day (Figure 3), which showed an ec- balance while standing near his desk at work and felt his tatic left vertebral artery severely compressing the antero- body suddenly being directed to the right. He sensed that lateral medulla. The MRI showed no acute infarcts on the ground was moving underneath him. The episode lasted diffusion-weighted imaging and no hemorrhages on sus- (REPRINTED) ARCH NEUROL / VOL 63, FEB 2006 WWW.ARCHNEUROL.COM 236 ©2006 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/
Recommended publications
  • Evaluation of Artery Visualizations for Heart Disease Diagnosis
    Evaluation of Artery Visualizations for Heart Disease Diagnosis Michelle A. Borkin, Student Member, IEEE, Krzysztof Z. Gajos, Amanda Peters, Dimitrios Mitsouras, Simone Melchionna, Frank J. Rybicki, Charles L. Feldman, and Hanspeter Pfister, Senior Member, IEEE Fig. 1. Left: Traditional 2D projection (A) of a single artery, and 3D representation (C) of a right coronary artery tree with a rainbow color map. Right: 2D tree diagram representation (B) and equivalent 3D representation (D) of a left coronary artery tree with a diverging color map. Abstract—Heart disease is the number one killer in the United States, and finding indicators of the disease at an early stage is critical for treatment and prevention. In this paper we evaluate visualization techniques that enable the diagnosis of coronary artery disease. A key physical quantity of medical interest is endothelial shear stress (ESS). Low ESS has been associated with sites of lesion formation and rapid progression of disease in the coronary arteries. Having effective visualizations of a patient’s ESS data is vital for the quick and thorough non-invasive evaluation by a cardiologist. We present a task taxonomy for hemodynamics based on a formative user study with domain experts. Based on the results of this study we developed HemoVis, an interactive visualization application for heart disease diagnosis that uses a novel 2D tree diagram representation of coronary artery trees. We present the results of a formal quantitative user study with domain experts that evaluates the effect of 2D versus 3D artery representations and of color maps on identifying regions of low ESS. We show statistically significant results demonstrating that our 2D visualizations are more accurate and efficient than 3D representations, and that a perceptually appropriate color map leads to fewer diagnostic mistakes than a rainbow color map.
    [Show full text]
  • Ipsilateral Subclavian Steal in Association with Aberrant Origin of the Left Vertebral Artery from the Aortic Arch
    411 Ipsilateral Subclavian Steal in Association with Aberrant Origin of the Left Vertebral Artery from the Aortic Arch John Holder1 Five cases are reported of left subclavian steal syndrome associated with anomalous Eugene F. Binet2 origin of the left vertebral artery from the aortic arch. In all five instances blood flow at Bernard Thompson3 the origin of the left vertebral artery was in an antegrade direction contrary to that usually reported in this condition. The distal subclavian artery was supplied via an extensive collateral network of vessels connecting the vertebral artery to the thyro­ cervical trunk. If a significant stenosis or occlusion is present within the left subc lavi an artery proximal to the origin of the left vertebral artery, the direction of the bl ood fl ow within the vertebral artery will reverse toward the parent vessel (retrograde flow). This phenomenon occurs when a negative pressure gradient of 20-40 torr exists between the vertebral-basilar artery junction and th e vertebral-subc lavian artery junction [1-3]. We describe five cases of subclavian steal confirmed by angiography where a significant stenosis or occlusion of the left subclavian artery was demonstrated in association with anomalous origin of th e left vertebral artery directly from the aortic arch. In all five cases blood flow at the origin of the left vertebral artery was in an antegrade direction contrary to that more commonly reported in the subclavian steal syndrome. Materials and Methods The five patients were all 44- 58-year-old men. Three sought medical attention for symptoms specificall y related to th e left arm .
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • The Variations of the Subclavian Artery and Its Branches Ahmet H
    Okajimas Folia Anat. Jpn., 76(5): 255-262, December, 1999 The Variations of the Subclavian Artery and Its Branches By Ahmet H. YUCEL, Emine KIZILKANAT and CengizO. OZDEMIR Department of Anatomy, Faculty of Medicine, Cukurova University, 01330 Balcali, Adana Turkey -Received for Publication, June 19,1999- Key Words: Subclavian artery, Vertebral artery, Arterial variation Summary: This study reports important variations in branches of the subclavian artery in a singular cadaver. The origin of the left vertebral artery was from the aortic arch. On the right side, no thyrocervical trunk was found. The two branches which normally originate from the thyrocervical trunk had a different origin. The transverse cervical artery arose directly from the subclavian artery and suprascapular artery originated from the internal thoracic artery. This variation provides a short route for posterior scapular anastomoses. An awareness of this rare variation is important because this area is used for diagnostic and surgical procedures. The subclavian artery, the main artery of the The variations of the subclavian artery and its upper extremity, also gives off the branches which branches have a great importance both in blood supply the neck region. The right subclavian arises vessels surgery and in angiographic investigations. from the brachiocephalic trunk, the left from the aortic arch. Because of this, the first part of the right and left subclavian arteries differs both in the Subjects origin and length. The branches of the subclavian artery are vertebral artery, internal thoracic artery, This work is based on a dissection carried out in thyrocervical trunk, costocervical trunk and dorsal the Department of Anatomy in the Faculty of scapular artery.
    [Show full text]
  • Vascular Anomalies Compressing the Oesophagus and Trachea
    Thorax: first published as 10.1136/thx.24.3.295 on 1 May 1969. Downloaded from T7horax (1969), 24, 295. Vascular anomalies compressing the oesophagus and trachea J. C. R. LINCOLN, P. B. DEVERALL, J. STARK, E. ABERDEEN, AND D. J. WATERSTON From the Hospital for Sick Children, Great Ormond Street, London W.C.I Vascular rings formed by anomalies of major arteries can compress the trachea and oesophagus so much as to cause respiratory distress and dysphagia. Twenty-nine patients with this condition are reviewed and discussed in five groups. The symptoms and signs are noted. Radiological examination by barium swallow is the most useful diagnostic aid. Symptoms can only be relieved by operation. The trachea is often deformed at the site of the constricting ring. Only infrequently is there immediate relief from the pre-operative symptoms. Two babies were successfully treated for an aberrant left pulmonary artery. The diagnosis and treatment of major arterial DOUBLE AORTIC ARCH Nineteen children were anomalies which cause compression of the oeso- treated for some form of double aortic arch. Their phagus and trachea are now well established. age at operation ranged from 1 week to 11 months, Although an aberrant right subclavian artery was but the majority were treated at about the age of described in 1794 by Bayford (Fig. 1), who gave 5 to 6 months (Fig. 2). Frequently the presenting the detailed post-mortem finding in a woman who symptoms had been noticed since birth but for had died from starvation secondary to this varying reasons there was delay in making the http://thorax.bmj.com/ anomaly, and a double aortic arch was described correct diagnosis.
    [Show full text]
  • Artery/Vein Classification of Blood Vessel Tree in Retinal Imaging
    Artery/vein Classification of Blood Vessel Tree in Retinal Imaging Joaquim de Moura1, Jorge Novo1, Marcos Ortega1, Noelia Barreira1 and Pablo Charlon´ 2 1Departamento de Computacion,´ Universidade da Coruna,˜ A Coruna,˜ Spain 2Instituto Oftalmologico´ Victoria de Rojas, A Coruna,˜ Spain joaquim.demoura, jnovo, mortega, nbarreira @udc.es, [email protected] { } Keywords: Retinal Imaging, Vascular Tree, Segmentation, Artery/vein Classification. Abstract: Alterations in the retinal microcirculation are signs of relevant diseases such as hypertension, arteriosclerosis, or diabetes. Specifically, arterial constriction and narrowing were associated with early stages of hypertension. Moreover, retinal vasculature abnormalities may be useful indicators for cerebrovascular and cardiovascular diseases. The Arterio-Venous Ratio (AVR), that measures the relation between arteries and veins, is one of the most referenced ways of quantifying the changes in the retinal vessel tree. Since these alterations affect differently arteries and veins, a precise characterization of both types of vessels is a key issue in the development of automatic diagnosis systems. In this work, we propose a methodology for the automatic vessel classification between arteries and veins in eye fundus images. The proposal was tested and validated with 19 near-infrared reflectance retinographies. The methodology provided satisfactory results, in a complex domain as is the retinal vessel tree identification and classification. 1 INTRODUCTION Hence, direct analysis of many injuries caused by oc- ular pathologies can be achieved, as is the case, for The analysis of the eye fundus offers useful infor- example, the diabetic retinopathy (DR). The DR is a mation about the status of the different structures the diabetes mellitus complication, one of the principal human visual system integrates, as happens with the causes of blindness in the world (Pascolini, 2011).
    [Show full text]
  • The Inferior Epigastric Artery: Anatomical Study and Clinical Significance
    Int. J. Morphol., 35(1):7-11, 2017. The Inferior Epigastric Artery: Anatomical Study and Clinical Significance Arteria Epigástrica Inferior: Estudio Anatómico y Significancia Clínica Waseem Al-Talalwah AL-TALALWAH, W. The inferior epigastric artery: anatomical study and clinical significance. Int. J. Morphol., 35(1):7-11, 2017. SUMMARY: The inferior epigastric artery usually arises from the external iliac artery. It may arise from different origin. The aim of current study is to provide sufficient date of the inferior epigastric artery for clinician, radiologists, surgeons, orthopaedic surgeon, obstetricians and gynaecologists. The current study includes 171 dissected cadavers (92 male and 79 female) to investigate the origin and branch of the inferior epigastric artery in United Kingdom population (Caucasian) as well as in male and female. The inferior epigastric artery found to be a direct branch arising independently from the external iliac artery in 83.6 %. Inferior epigastric artery arises from common trunk of external iliac artery with the obturator artery or aberrant obturator artery in 15.1 % or 1.3 %. Further, the inferior epigastric artery gives obturator and aberrant obturator branch in 3.3 % and 0.3 %. Therefore, the retropubic connection vascularity is 20 % which is more in female than male. As the retropubic region includes a high vascular variation, a great precaution has to be considered prior to surgery such as hernia repair, internal fixation of pubic fracture and skin flap transplantation. The radiologists have to report treating physicians to decrease intra-pelvic haemorrhage due to iatrogenic lacerating obturator or its accessory artery KEY WORDS: Inferior epigastric; Obturator; Aberrant Oburator; Accessory Obturator; Hernia; Corona Mortis; Pubic fracture.
    [Show full text]
  • Screening for Carotid Artery Stenosis
    Understanding Task Force Recommendations Screening for Carotid Artery Stenosis The U.S. Preventive Services Task Force (Task Force) The final recommendation statement summarizes has issued a final recommendation statement on what the Task Force learned about the potential Screening for Carotid Artery Stenosis. benefits and harms of screening for carotid artery stenosis: Health professionals should not screen the This final recommendation statement applies to general adult population. adults who do not have signs or symptoms of a stroke and who have not already had a stroke or a This fact sheet explains this recommendation and transient ischemic attack (a “mini-stroke”). People what it might mean for you. with signs or symptoms of a stroke should see their doctor immediately. Carotid artery stenosis is the narrowing of the arteries that run along each What is carotid side of the neck. These arteries provide blood flow to the brain. Over time, plaque (a fatty, waxy substance) can build up and harden the arteries, artery stenosis? limiting the flow of blood to the brain. Facts About Carotid Artery Stenosis Carotid artery stenosis is one of many risk factors for stroke, a leading cause of death and disability in the United States. However, carotid artery stenosis is uncommon—about ½ to 1% of the population have the condition. The main risk factors are older age, being male, high blood pressure, smoking, high blood cholesterol, diabetes, and heart disease. Screening and Treatment for Carotid Artery Stenosis Carotid artery stenosis screening is often done using ultrasound, a painless test that uses sound waves to create a picture of the carotid arteries.
    [Show full text]
  • A Very Rare Origin of the Left Vertebral Artery and Its Clinical Implications
    ARC Journal of Cardiology Volume 5, Issue 2, 2019, PP 14-18 ISSN No. (Online): 2455-5991 DOI: http://dx.doi.org/10.20431/2455-5991.0502003 www.arcjournals.org A Very Rare Origin of the Left Vertebral Artery and its Clinical Implications Olutayo Ariyo* Dept. of Anatomy Pathology and Cell Biology, SKMC at Thomas Jefferson University, Philadelphia, USA *Corresponding Author: Olutayo Ariyo, Dept. of Anatomy Pathology and Cell Biology, SKMC at Thomas Jefferson University, Philadelphia, USA, E-mail: [email protected] Abstract: Most variants of the left vertebral artery tend to occursupra-aortic, usually between the left common carotid and the left subclavian arteries. We report a rare variant of the left vertebral artery arising as the most distal and inferior branch off the aortic arch in a 69 year- old male cadaver. Arising postero- inferiorly from the arch, the variant coursed superiorly and medial -ward, posterior to the left subclavian artery, enteringthe transverse cervical foramina at C5 level to run more cranially cervical foramina C5-C2. The variant artery was an observed with some tortuosity just proximal to entry into C5 foramina. The normally arising left or right vertebral artery plays a vital role in the Subclavian Steal Syndrome, a retrograde flow in the ipsilateral vertebral artery in an occlusion proximal origin of its ipsilateral subclavian artery. In our reported variant, modelled with a possible occlusion in the proximal segment of the left subclavian artery, despite an hypothesized retrograde flow in the left vertebral artery will not be helpful in delivering blood into the subclavian-axillary continuum, as such retrograde flow will dump into the aortic arch directly and unhelpful to the occluded left subclavian artery.
    [Show full text]
  • Blood Vessels and Circulation
    19 Blood Vessels and Circulation Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Functional Anatomy of Blood Vessels Learning Outcomes 19.1 Distinguish between the pulmonary and systemic circuits, and identify afferent and efferent blood vessels. 19.2 Distinguish among the types of blood vessels on the basis of their structure and function. 19.3 Describe the structures of capillaries and their functions in the exchange of dissolved materials between blood and interstitial fluid. 19.4 Describe the venous system, and indicate the distribution of blood within the cardiovascular system. © 2018 Pearson Education, Inc. Module 19.1: The heart pumps blood, in sequence, through the arteries, capillaries, and veins of the pulmonary and systemic circuits Blood vessels . Blood vessels conduct blood between the heart and peripheral tissues . Arteries (carry blood away from the heart) • Also called efferent vessels . Veins (carry blood to the heart) • Also called afferent vessels . Capillaries (exchange substances between blood and tissues) • Interconnect smallest arteries and smallest veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Two circuits 1. Pulmonary circuit • To and from gas exchange surfaces in the lungs 2. Systemic circuit • To and from rest of body © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits 1. Right atrium (entry chamber) • Collects blood from systemic circuit • To right ventricle to pulmonary circuit 2. Pulmonary circuit • Pulmonary arteries to pulmonary capillaries to pulmonary veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits (continued) 3. Left atrium • Receives blood from pulmonary circuit • To left ventricle to systemic circuit 4.
    [Show full text]
  • An Unusual Origin and Course of the Thyroidea Ima Artery, with Absence of Inferior Thyroid Artery Bilaterally
    Surgical and Radiologic Anatomy (2019) 41:235–237 https://doi.org/10.1007/s00276-018-2122-1 ANATOMIC VARIATIONS An unusual origin and course of the thyroidea ima artery, with absence of inferior thyroid artery bilaterally Doris George Yohannan1 · Rajeev Rajan1 · Akhil Bhuvanendran Chandran1 · Renuka Krishnapillai1 Received: 31 May 2018 / Accepted: 21 October 2018 / Published online: 25 October 2018 © Springer-Verlag France SAS, part of Springer Nature 2018 Abstract We report an unusual origin and course of the thyroidea ima artery in a male cadaver. The ima artery originated from the right subclavian artery very close to origin of the right vertebral artery. The artery coursed anteriorly between the common carotid artery medially and internal jugular vein laterally. It then coursed obliquely, from below upwards, from lateral to medial superficial to common carotid artery, to reach the inferior pole of the right lobe of thyroid and branched repeatedly to supply the anteroinferior and posteroinferior aspects of both the thyroid lobes and isthmus. The superior thyroid arteries were normal. Both the inferior thyroid arteries were absent. The unusual feature of this thyroidea ima artery is its origin from the subclavian artery close to vertebral artery origin, the location being remarkably far-off from the usual near midline position, and the oblique and relatively superficial course. This report is a caveat to neck surgeons to consider such a superficially running vessel to be a thyroidea ima artery. Keywords Thyroid vascular anatomy · Thyroidea ima artery · Artery of Neubauer · Blood supply of thyroid · Variations Introduction (1.1%), transverse scapular (1.1%), or pericardiophrenic or thyrocervical trunk [8, 10].
    [Show full text]
  • The 0Ccipital-Vertebral Anastomosis
    The 0ccipital-Vertebral Anastomosis MANNIE M. SCHECIITER,M.D. Section of Neuroradiology, Department of Radiology, Albert Einstein College of Medicine, New York, New York HE presence and significance of collat- artery. In the past this was, in fact, the basis eral circulation between the various for techniques of indirect vertebral angiog- T branches of the intracranial circulation raphy in which the right carotid artery was and branches of the intracranial and extra- compressed distal to the site of the puncture cranial circulation have been described in the during angiography.4,5 Similarly retrograde literature. With the current interest and em- carotid catheterization may also be used to phasis in the medical and surgical treatment demonstrate the vertebral artery and its of cerebrovascular disease and with improve- branches).1~ ments in diagnostic procedures, a clearer When filling of the vertebral artery occurs demonstration of these collateral channels is during the injection of contrast medium into now more frequently sought and recognized. the carotid artery or vice versa, the occipital- Most of these potential collateral channels vertebral anastomosis may be demonstrated become obvious only when occlusive vascular by including the cervical course of the verte- disease interrupts the normal pathways, and bral artery in the film. Absence of contrast the channels dilate to form alternate routes medium in the proximal portion of the com- for the passage of blood to vital areas. A mon carotid artery and vertebral artery will temporary differential in the hydrodynamics be recognized readily, excluding this as the of two opposing systems may also reverse the possible course of flow (Figs.
    [Show full text]