Human Visual Perception - Topics

Total Page:16

File Type:pdf, Size:1020Kb

Human Visual Perception - Topics Human visual perception - topics n Visual acuity n Weber-Fechner Law n Lateral inhibition and excitation n Transfer functions of the color channels n Spatial and temporal masking n Eye movements Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 1 Anatomy of the human eye iris cornea pupil fovea lens visual axis optic axis optic disk optic nerve retina sclera object retinal image Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 2 1 Optical properties of the human eye n Deviations from ideal perspective projection due to l Aperture of the eye l Focus errors (spherical aberration) l Chromatic aberration l Dispersion n Effects can be summarized by a 2D convolution with the optical point-spread function (PSF). n Instead of a PSF, an optical line-spread function (LSF) is often given, which can be measured more easily. Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 3 Optical LSF of the human eye LSF measured for different pupil diameters (Campbell+Gubisch) LSF calculated from eye aperture (due to diffraction) Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 4 2 Optical modulation transfer function (MTF) of the human eye n MTF is measured directly with sinewave gratings. n The optical modulation transfer function (MTF) can be interpreted as contrast ratio image:object Fourier transform of the optical LSF. spatial frequency [cpd] Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 5 Sine wave grating L - L contrast ratio = 2 1 L2 + L1 intensity position Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 6 3 Human retina I light Signal propagation in the retina: optic nerve ganglion cells (=optic nerve) fibers ganglion cells inner synaptic bipolar cells layer amacrine cells bipolar cells horizontal cells outer synaptic layer receptors receptor nuclei receptors pigmented layer (epithelium cells) Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 7 Human retina II receptors in 1000/mm2 Rods Cones high sensitivity low sensitivity low light vision day light vision > 1 cd/m2 rods monochrome color cones "scotopic vision" "photopic vision" blind spot fovea nose angle [degree] Video displays Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 8 4 Visual acuity n Spatial resolution in lines/arcmin: cones rods blind spot fovea nose angle [degree] n Minimum distance of adjacent cones in the central fovea limits spatial resolution. (2 - 2.3 mm 25 . 29 sec of arc) Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 9 Weber-Fechner law, I n Experiment: n Result: 2 surround /m luminance LS background cd stimulus luminance LB area L in D CONST threshold 2 LB, background luminance (cd/m ) Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 10 5 Weber-Fechner law, II n "Weber-Fechner Law” DL = cLB c = 0.01 ... 0.02 n Implies logarithmic relationship between physical luminance and subjectively perceived brightness. n Other proposed nonlinearities: square-root, cube-root, polynomials n g-characteristic of CRT displays is approximate inverse of nonlinearity of human brightness perception. Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 11 Inhibition and excitation in the retina n Receptive field of a ganglion cell (=fiber of the optic nerve) shows „center-surround response“ with both l Lateral inhibition l Lateral excitation receptive field center surround activity average of neuron activity Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 12 6 Spatial contrast sensitivity n Lateral inhibition and excitation together lead to a bandpass characteristic of the contrast sensitivity function of the human visual system ) 2 /m cd contrast sensitivity (@ 500 spatial frequency (cpd) Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 13 Color vision: opponent color theory n Retina carries out “matrix operation“ to represent colors in the opponent color system (Y, Y-B, R-G) Opponent color model: Opponent color space: B G R white green Y Luminance signal YB blue yellow Chromatic RG channels red black B G R Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 14 7 Color vision: contrast sensitivity in opponent color space n Spatial frequency response of Y-B and R-G channel (Girod, 1988): spatial frequency (cpd) n Bandwidth Y:RG:YB approximately 8:5:3. n Some researchers have observed bandpass characteristic also for chromaticity channels. Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 15 Spatial masking, I dark light Experiment: distance D dynamic noise bar change in video signal amplitude [0 . 255] 80 ® 230 visibility threshold 80 ® 180 (w-Modell, Girod, 1987) 6 dB 80 ® 130 visibility threshold [log units] -20 -10 0 10 20 distance from edge [arcmin] Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 16 8 Spatial masking, II Visibility threshold for the g-predistorted video signal (w-Modell, Girod, 1987): "g-shift" 6 dB change of video amplitude [0 . 255] 80 ® 230 80 ® 180 80 ® 130 visibility threshold [log units] -20 -10 0 10 20 distance from edge [arcmin] Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 17 Spatiotemporal contrast sensitivity of luminance perception n Spatiotemporal contrast sensitivity of the luminance channel has bandpass characteristic. n Contrast sensitivity function separable for high spatial and temporal frequencies only. n Plot of contrast sensitivity function (from Kelly): just modulation perceptable spatial frequency temporal frequency Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 18 9 Temporal masking n Visibility thresholds for g-predistorted video signal after luminance discontinuity (w-model, Girod, 1987): visibility threshold [arbitrary log units] time after discontinuity [ms] Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 19 Eye movements slow corrective saccade saccade; v up to 800 °/s drift saccade SPEM ; v < 30 °/s SPEM: smooth pursuit eye movement Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 20 10 Temporal masking and SPEMs t=0 t=t0 t0 < t < t1 t1 < t Eye fixates screen Eye tracks moving edge x x dark dark t 0 t 0 bright bright t 1 t trajectory of eye 1 trajectory of eye movement movement t t Temporal masking Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 21 Eye movements and spatiotemporal frequency response of the human visual system, I n Assume SPEM of constant velocity: x' = x - v x t y' = y - v y t t' = t retina coordinate system display coordinate system n Coordinate transformation in spatiotemporal frequency space (“Doppler effect“) w w x ' = x wy ' = wy w w w w t ' = t + x vx + y vy Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 22 11 Eye movements and spatiotemporal frequency response of the human visual system, II relative velocity between eye and coordinate system Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 23 Eye movements and spatiotemporal frequency response of the human visual system, III relative velocity between eye and coordinate system Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 24 12 Perception of a temporally sampled image signal, without movement spatial frequency temporal frequency "window of perception" Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 25 Perception of a temporally sampled image signal, translatory movement spatial frequency 3 pel/frame temporal frequency n Phosphors with fast decay reproduce more than 20 temporal baseband replicas "window of perception", n No spectral overlap -> perfect with SPEM reconstruction of original signal possible Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 26 13 Anatomy of the human visual system (enlarged) retina visual cortex overlapping visual fields Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 27 Human visual perception - summary n Spatial frequency components visible up to 60 cpd n Logarithmic relationship between luminance and subjective brightness perception n Lateral inhibition -> spatial bandpass characteristic n Chromaticity channels have lower bandwidth n Visibility threshold often increased in the vicinity of edges, but sometimes decreased (“masking”). n SPEMs shear window of perception in spatiotemporal frequency space. Bernd Girod: EE368b Image and Video Compression Human Visual Perception no. 28 14.
Recommended publications
  • Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors
    pharmaceutics Article Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors Hyeong Min Kim 1,†, Hyounkoo Han 2,†, Hye Kyoung Hong 1, Ji Hyun Park 1, Kyu Hyung Park 1, Hyuncheol Kim 2,* and Se Joon Woo 1,* 1 Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; [email protected] (H.M.K.); [email protected] (H.K.H.); [email protected] (J.H.P.); [email protected] (K.H.P.) 2 Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; [email protected] * Correspondence: [email protected] (H.K.); [email protected] (S.J.W.); Tel.: +82-2-705-8922 (H.K.); +82-31-787-7377 (S.J.W.); Fax: +82-2-3273-0331 (H.K.); +82-31-787-4057 (S.J.W.) † These authors contributed equally to this work. Abstract: In this study, Retina-RPE-Choroid-Sclera (RCS) and RPE-Choroid-Sclera (CS) were prepared by scraping them off neural retina, and using the Ussing chamber we measured the average time– concentration values in the acceptor chamber across five isolated rabbit tissues for each drug molecule. We determined the outward direction permeability of the RCS and CS and calculated the neural retina permeability. The permeability coefficients of RCS and CS were as follows: ganciclovir, 13.78 ± 5.82 and 23.22 ± 9.74; brimonidine, 15.34 ± 7.64 and 31.56 ± 12.46; bevacizumab, 0.0136 ± 0.0059 and 0.0612 ± 0.0264 (×10−6 cm/s).
    [Show full text]
  • The Sclera C
    The Sclera c. Stephen Foster Maite Sainz de la Maza The Sclera Foreword by Frederick A. lakobiec With 134 Illustrations and 33 Color Plates Springer Science+Business Media, LLC C. Stephen Foster, MD Associate Professor of Ophthalmology Harvard Medical School Director, Immunology and Uveitis Service Massachusetts Eye and Ear Infirmary Boston, MA 02114 USA Maite Sainz de la Maza, MD, PhD Assistant Professor of Ophthalmology Central University of Barcelona 08036 Barcelona Spain Cover illustration: The eye of a patient with rheumatoid arthritis who has developed pro­ gressively destructive necrotizing scleritis. Library of Congress Cataloging-in-Publication Data Foster, C. Stephen (Charles Stephen), 1942- The sclera/C. Stephen Foster and Maite Sainz de la Maza. p. cm. Includes bibliographical references and index. ISBN 978-1-4757-2345-8 ISBN 978-1-4757-2343-4 (eBook) DOI 10.1007/978-1-4757-2343-4 1. Sclera-Diseases. I. Maza, Maite Sainz de lao II. Title. [DNLM: 1. Scleritis. 2. Sclera. WW 230 F754s 1993] RE328.F67 1993 617.7' 19-dc20 DNLMIDLC for Library of Congress 93-10235 Printed on acid-free paper. © 1994 Springer Science+ Business Media New York Originally published by Springer-Verlag New York, Inc. in 1994 Softcover reprint of the hardcover 1st edition 1994 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher, Springer Science+Business Media, LLC. except for brief excerpts in connection with reviews or, scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
    [Show full text]
  • Understanding Sensory Processing: Looking at Children's Behavior Through the Lens of Sensory Processing
    Understanding Sensory Processing: Looking at Children’s Behavior Through the Lens of Sensory Processing Communities of Practice in Autism September 24, 2009 Charlottesville, VA Dianne Koontz Lowman, Ed.D. Early Childhood Coordinator Region 5 T/TAC James Madison University MSC 9002 Harrisonburg, VA 22807 [email protected] ______________________________________________________________________________ Dianne Koontz Lowman/[email protected]/2008 Page 1 Looking at Children’s Behavior Through the Lens of Sensory Processing Do you know a child like this? Travis is constantly moving, pushing, or chewing on things. The collar of his shirt and coat are always wet from chewing. When talking to people, he tends to push up against you. Or do you know another child? Sierra does not like to be hugged or kissed by anyone. She gets upset with other children bump up against her. She doesn’t like socks with a heel or toe seam or any tags on clothes. Why is Travis always chewing? Why doesn’t Sierra liked to be touched? Why do children react differently to things around them? These children have different ways of reacting to the things around them, to sensations. Over the years, different terms (such as sensory integration) have been used to describe how children deal with the information they receive through their senses. Currently, the term being used to describe children who have difficulty dealing with input from their senses is sensory processing disorder. _____________________________________________________________________ Sensory Processing Disorder
    [Show full text]
  • Extraocular Muscles Orbital Muscles
    EXTRAOCULAR MUSCLES ORBITAL MUSCLES INTRA- EXTRA- OCULAR OCULAR CILIARY MUSCLES INVOLUNTARY VOLUNTARY 1.Superior tarsal muscle. 1.Levator Palpebrae Superioris 2.Inferior tarsal muscle 2.Superior rectus 3.Inferior rectus 4.Medial rectus 5.Lateral rectus 6.Superior oblique 7.Inferior oblique LEVATOR PALPEBRAE SUPERIORIOS Origin- Inferior surface of lesser wing of sphenoid. Insertion- Upper lamina (Voluntary) - Anterior surface of superior tarsus & skin of upper eyelid. Middle lamina (Involuntary) - Superior margin of superior tarsus. (Superior Tarsus Muscle / Muller muscle) Lower lamina (Involuntary) - Superior conjunctival fornix Nerve Supply :- Voluntary part – Oculomotor Nerve Involuntary part – Sympathetic ACTION :- Elevation of upper eye lid C/S :- Drooping of upper eyelid. Congenital ptosis due to localized myogenic dysgenesis Complete ptosis - Injury to occulomotor nerve. Partial ptosis - disruption of postganglionic sympathetic fibres from superior cervical sympathetic ganglion. Extra ocular Muscles : Origin Levator palpebrae superioris Superior Oblique Superior Rectus Lateral Rectus Medial Rectus Inferior Oblique Inferior Rectus RECTUS MUSCLES : ORIGIN • Arises from a common tendinous ring knows as ANNULUS OF ZINN • Common ring of connective tissue • Anterior to optic foramen • Forms a muscle cone Clinical Significance Retrobulbar neuritis ○ Origin of SUPERIOR AND MEDIAL RECTUS are closely attached to the dural sheath of the optic nerve, which leads to pain during upward & inward movements of the globe. Thyroid orbitopathy ○ Medial & Inf.rectus thicken. especially near the orbital apex - compression of the optic nerve as it enters the optic canal adjacent to the body of the sphenoid bone. Ophthalmoplegia ○ Proptosis occur due to muscle laxity. Medial Rectus Superior Rectus Origin :- Superior limb of the tendonous ring, and optic nerve sheath.
    [Show full text]
  • The Effects of Cognition on Pain Perception (Prepared for Anonymous Review.)
    I think it’s going to hurt: the effects of cognition on pain perception (Prepared for anonymous review.) Abstract. The aim of this paper is to investigate whether, or to what extent, cognitive states (such as beliefs or intentions) influence pain perception. We begin with an examination of the notion of cognitive penetration, followed by a detailed description of the neurophysiological underpinnings of pain perception. We then argue that some studies on placebo effects suggest that there are cases in which our beliefs can penetrate our experience of pain. Keywords: pain, music therapy, gate-control theory, cognitive penetration, top-down modularity, perceptual learning, placebo effect 1. Introduction Consider the experience of eating wasabi. When you put wasabi on your food because you believe that spicy foods are tasty, the stimulation of pain receptors in your mouth can result in a pleasant experience. In this case, your belief seems to influence your perceptual experience. However, when you put wasabi on your food because you incorrectly believe that the green paste is mint, the stimulation of pain receptors in your mouth can result in a painful experience rather than a pleasant one. In this case, your belief that the green paste is mint does not seem to influence your perceptual experience. The aim of this paper is to investigate whether, or to what extent, cognitive states (such as beliefs) influence pain perception. We begin with an examination of the notion of cognitive penetration and its theoretical implications using studies in visual perception. We then turn our attention to the perception of pain by considering its neurophysiological underpinnings.
    [Show full text]
  • The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
    Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life.
    [Show full text]
  • Visual Perception in Migraine: a Narrative Review
    vision Review Visual Perception in Migraine: A Narrative Review Nouchine Hadjikhani 1,2,* and Maurice Vincent 3 1 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA 2 Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, 41119 Gothenburg, Sweden 3 Eli Lilly and Company, Indianapolis, IN 46285, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-617-724-5625 Abstract: Migraine, the most frequent neurological ailment, affects visual processing during and between attacks. Most visual disturbances associated with migraine can be explained by increased neural hyperexcitability, as suggested by clinical, physiological and neuroimaging evidence. Here, we review how simple (e.g., patterns, color) visual functions can be affected in patients with migraine, describe the different complex manifestations of the so-called Alice in Wonderland Syndrome, and discuss how visual stimuli can trigger migraine attacks. We also reinforce the importance of a thorough, proactive examination of visual function in people with migraine. Keywords: migraine aura; vision; Alice in Wonderland Syndrome 1. Introduction Vision consumes a substantial portion of brain processing in humans. Migraine, the most frequent neurological ailment, affects vision more than any other cerebral function, both during and between attacks. Visual experiences in patients with migraine vary vastly in nature, extent and intensity, suggesting that migraine affects the central nervous system (CNS) anatomically and functionally in many different ways, thereby disrupting Citation: Hadjikhani, N.; Vincent, M. several components of visual processing. Migraine visual symptoms are simple (positive or Visual Perception in Migraine: A Narrative Review. Vision 2021, 5, 20. negative), or complex, which involve larger and more elaborate vision disturbances, such https://doi.org/10.3390/vision5020020 as the perception of fortification spectra and other illusions [1].
    [Show full text]
  • The Visual System: Higher Visual Processing
    The Visual System: Higher Visual Processing Primary visual cortex The primary visual cortex is located in the occipital cortex. It receives visual information exclusively from the contralateral hemifield, which is topographically represented and wherein the fovea is granted an extended representation. Like most cortical areas, primary visual cortex consists of six layers. It also contains, however, a prominent stripe of white matter in its layer 4 - the stripe of Gennari - consisting of the myelinated axons of the lateral geniculate nucleus neurons. For this reason, the primary visual cortex is also referred to as the striate cortex. The LGN projections to the primary visual cortex are segregated. The axons of the cells from the magnocellular layers terminate principally within sublamina 4Ca, and those from the parvocellular layers terminate principally within sublamina 4Cb. Ocular dominance columns The inputs from the two eyes also are segregated within layer 4 of primary visual cortex and form alternating ocular dominance columns. Alternating ocular dominance columns can be visualized with autoradiography after injecting radiolabeled amino acids into one eye that are transported transynaptically from the retina. Although the neurons in layer 4 are monocular, neurons in the other layers of the same column combine signals from the two eyes, but their activation has the same ocular preference. Bringing together the inputs from the two eyes at the level of the striate cortex provide a basis for stereopsis, the sensation of depth perception provided by binocular disparity, i.e., when an image falls on non-corresponding parts of the two retinas. Some neurons respond to disparities beyond the plane of fixation (far cells), while others respond to disparities in front of the plane of the fixation (near cells).
    [Show full text]
  • Visual Perceptual Skills
    Super Duper® Handy Handouts!® Number 168 Guidelines for Identifying Visual Perceptual Problems in School-Age Children by Ann Stensaas, M.S., OTR/L We use our sense of sight to help us function in the world around us. It helps us figure out if something is near or far away, safe or threatening. Eyesight, also know as visual perception, refers to our ability to accurately identify and locate objects in our environment. Visual perception is an important component of vision that contributes to the way we see and interpret the world. What Is Visual Perception? Visual perception is our ability to process and organize visual information from the environment. This requires the integration of all of the body’s sensory experiences including sight, sound, touch, smell, balance, and movement. Most children are able to integrate these senses by the time they start school. This is important because approximately 75% of all classroom learning is visual. A child with even mild visual-perceptual difficulties will struggle with learning in the classroom and often in other areas of life. How Are Visual Perceptual Problems Diagnosed? A child with visual perceptual problems may be diagnosed with a visual processing disorder. He/she may be able to easily read an eye chart (acuity) but have difficulty organizing and making sense of visual information. In fact, many children with visual processing disorders have good acuity (i.e., 20/20 vision). A child with a visual-processing disorder may demonstrate difficulty discriminating between certain letters or numbers, putting together age-appropriate puzzles, or finding matching socks in a drawer.
    [Show full text]
  • The Proteomes of the Human Eye, a Highly Compartmentalized Organ
    Proteomics 17, 1–2, 2017, 1600340 DOI 10.1002/pmic.201600340 (1 of 3) 1600340 The proteomes of the human eye, a highly compartmentalized organ Gilbert S. Omenn Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA Proteomics has now published a series of Dataset Briefs on the EyeOme from the HUPO Received: November 2, 2016 Human Proteome Project with high-quality analyses of the proteomes of these compartments Accepted: November 4, 2016 of the human eye: retina, iris, ciliary body, retinal pigment epithelium/choroid, retrobulbar optic nerve, and sclera, with 3436, 2929, 2867, 2755, 2711, and 1945 proteins, respectively. These proteomics resources represent a useful starting point for a broad range of research aimed at developing preventive and therapeutic interventions for the various causes of blindness. Keywords: Biomedicine / Biology and Disease-driven Human Proteome Project / End Blindness by 2020 / Eye proteome / EyeOme / Human Proteome Project See accompanying articles in the EyeOme series: http://dx.doi.org/10.1002/pmic.201600229; http://dx.doi.org/10.1002/pmic.201500188; http://dx.doi.org/10.1002/pmic.201400397 Proteomics has now published a series of four papers on compartments of the eye as shown in Fig. 1. As was noted [5], the human eye proteome [1–4]. Under the aegis of the Hu- it was not feasible to assess the quality of the data or estimate man Proteome Organization Biology and Disease-driven Hu- numbers of likely false positives in the heterogeneous studies man Proteome Project (HPP), the EyeOme was organized by from which these findings were summarized.
    [Show full text]
  • AN OT's Toolbox : Making the Most out of Visual Processing and Motor Processing Skills
    AN OT’s Toolbox : Making the Most out of Visual Processing and Motor Processing Skills Presented by Beth Kelley, OTR/L, MIMC FOTA 2012 By Definition Visual Processing Motor Processing is is the sequence of steps synonymous with Motor that information takes as Skills Disorder which is it flows from visual any disorder characterized sensors to cognitive by inadequate development processing.1 of motor coordination severe enough to restrict locomotion or the ability to perform tasks, schoolwork, or other activities.2 1. http://en.wikipedia.org/wiki/Visual_ processing 2. http://medical-dictionary.thefreedictionary.com/Motor+skills+disorder Visual Processing What is Visual Processing? What are systems involved with Visual Processing? Is Visual Processing the same thing as vision? Review general anatomy of the eye. Review general functions of the eye. -Visual perception and the OT’s role. -Visual-Motor skills and why they are needed in OT treatment. What is Visual Processing “Visual processing is the sequence of steps that information takes as it flows from visual sensors to cognitive processing1” 1. http://en.wikipedia.org/wiki/Visual_Processing What are the systems involved with Visual Processing? 12 Basic Processes are as follows: 1. Vision 2. Visual Motor Processing 3. Visual Discrimination 4. Visual Memory 5. Visual Sequential Memory 6. Visual Spatial Processing 7. Visual Figure Ground 8. Visual Form Constancy 9. Visual Closure 10. Binocularity 11.Visual Accommodation 12.Visual Saccades 12 Basic Processes are: 1. Vision The faculty or state of being able to see. The act or power of sensing with the eyes; sight. The Anatomy of Vision 6 stages in Development of the Vision system Birth to 4 months 4-6 months 6-8 months 8-12 months 1-2 years 2-3 years At birth babies can see patterns of light and dark.
    [Show full text]
  • Visual Stimulation Activities for Infants and Toddlers
    National Institute for the Mentally Handicapped VISUAL STIMULATION ACTIVITIES FOR INFANTS AND TODDLERS A GUIDE TO PARENTS AND CAREGIVERS DR. AMAR Jyoihi PERShA Ms. K.R.NAWVi National Institute for the Mentally Handicapped (Ministryof Social Justice & Empowerment, Government of India) Manovikasnagar, Secunderabad - 500 009, Andhra Pradesh, INDIA. Grams : MANOVIKAS Phone : 040-27751741 Fax :040-27750198 E-mail : [email protected] Website : www.nimhindia.org VISUAL STIMULATION ACTIVITIES FOR INFANTS AND TODDLERS Authors : Dr. Amar Jyothi Persha, Ms. K.R. Nawvi Copyright 2004 National Institute for the Mentally Handicapped Secunderabad - 500 009. All rights Reserved. ISBN 81 89001 02 7 Designing Ramana Chepuri, Ramesh Chepuri, Ramaswamy, Secunderabad - 500 003. Ph : 040-55762484 Printed by : Sree Ramana Process Pvt. Ltd., Secunderabad - 500 003. Ph : 040-27811750 ,&ii1iti iiiificti icçiIii FP-1T1 (i1 1TfTftrr Icl1,'T NATIONALINSTITUTE FOR THE Dr.L. GOVINDA RAO MENTALLYHANDICAPPED irector (Ministry of Social Justice and Empowerment, Government of India) FOREWORD This book is an outcome of the project titled "Development of stimulation activities for visually impaired infants and toddlers". Studies show that there are six lakh children born with visual problem each year, among them almost 80% have a residual visual capacity. The visual system gives us a variety of information about the environment, which is necessary for learning and acquiring skills for daily living. Vision is the sense that reveals the mystery of the world to the child. The eyes are the outgrowth of the brain and they parallel the development and growth of the brain in the first few months of life. Visual system matures rapidly as the brain does in these early years of life.
    [Show full text]