Tracking of Human Body Joints Using Anthropometry

Total Page:16

File Type:pdf, Size:1020Kb

Tracking of Human Body Joints Using Anthropometry TRACKING OF HUMAN BODY JOINTS USING ANTHROPOMETRY A. Gritai and M. Shah School of Electrical Engineering and Computer Science University of Central Florida ABSTRACT take in account all aspects. Compared to some complex meth- We propose a novel approach for tracking of human joints ods, our approach does not require specific knowledge in mod- based on anthropometric constraints. A human is modeled eling human dynamics. Given a model of an action from any as a pictorial structure consisting of body landmarks (joints) viewpoint, this paper proposes a novel approach to track joints and corresponding links between them. Anthropometric con- in a single uncalibrated camera. Our motivation was the re- straints relate the landmarks of two persons if they are in the cent successful application of anthropometric constraints in same posture. Given a test video, where an actor performs the action recognition framework [3]. The anthropometric the same action as in a model video, and joint locations in constraints establish the relation between semantically corre- the model video, anthropometric constraints are used to deter- sponding anatomical landmarks of different people, perform- mine the epipolar lines, where the potential joint locations are ing the same action, in a fashion, as epipolar geometry gov- searched in the test video. The edge templates around joints erns the relation between corresponding points from differ- and related links are used to locate joints in the test video. ent views of the same scene. Because of the nature of an- The performance of this method is demonstrated on several thropometric constraints, the epipolar lines, associated with different human actions. landmarks, can slightly deviate from epipolar lines (due to the errors in positioning landmarks and linear relation be- tween human bodies of different sizes). However, they still 1. INTRODUCTION can reasonably approximate the landmark locations. Anthro- Tracking of human joints is one of the important tasks in com- pometric constraints and known image positions of joints in puter vision due to the vast area of applications. These ap- a model video can be combined in as alternative approach to plications include surveillance, human-computer interaction, complex methods. As with previous methods, the proposed action recognition, athlete performance analysis, etc. Joints approach also has limitations, mainly due to view geometric tracking is a hard problem, since the appearance changes sig- constraints; however, these limitations can be solved without nificantly due to non-rigid motion of humans, clothing, view strong additional efforts. The performance of the proposed point, lighting etc., therefore, appearance alone is not enough approach is demonstrated on several actions. for successful tracking. We propose a novel approach for 2D joints tracking in a single uncalibrated camera using anthro- 2. A HUMAN MODEL pometric constraints and known joint locations in a model video. We consider a window around the joint for modeling. This There has been a large amount of work related to this window provides us with the color and the edge information. problem, and for a more detailed analysis we refer to surveys The detection and tracking of joints can be improved by im- by Gavrila and Moeslund [2, 5]. The advanced methods are posing constraints on their mutual geometric coherence, i.e. based on sophisticated tracking algorithms. The Kalman filter the optimal joint locations must preserve an appearance of has been used previously for human motion tracking [8, 7], the links (body parts) connecting joints. Image regions cor- however, the use of the Kalman filter is limited by complex responding to links contain more essential information than human dynamics. A strong alternative to the Kalman filter windows around joints. Windows around joints and regions is the Condensation algorithm [4], employed by Ong in [6] corresponding to links can be perfectly embedded in a pic- and by Sidenbladh in [9]. In [1], Rehg modified the Con- torial structure. We refer to an entity performing an action densation algorithm to overcome the problem of a large state as an actor.A posture is a stance that an actor has at a cer- space required for human motion tracking. However, even if tain time instant, not to be confused with the actor’s pose, a kinematic model is known, it is a non-trivial task to predict which refers to position and orientation (in a rigid sense). possible deviations from the model. The pose and posture of an actor in terms of a set of points Since, humans perform actions with significant spatial and in 3-space is represented in terms of a set of 4-vectors Q = temporal variations that are hard to model, a tracker should fX1; X2;:::; Xng, where Xk = (Xk;Y k;Zk; ¤)> are ho- a pictorial structure defined as follow Chest 2 J P = (V; S); L )5,2( L )1,2( L )3,2( L )4,2( where V = fx1; x2;:::; xng corresponds to joins, and S = Right Left (k;j) Head Belly fL j k 6= j; k; j 2 Vg corresponds to links. The im- Shoulder Shoulder 1 2 n J 5 J 1 J 3 J 4 aged joint positions are represented by q = fx ; x ;:::; x g, L )7,5( L ,3( 11) L ,3( 10) L )6,4( where xk = (ak; bk; ¸)>. Xk and xk are related by a 4 £ 3 k k Right Right Left Left projection matrix C, i.e. x = CX . In [3], we proposed a Elbow Knee Knee Elbow conjecture, which states that there exists an invertible 4 £ 4 J 7 J 11 J 10 J 6 non-singular matrix relating the anatomical landmarks (Q and )9,7( (11,13) (10,12) )8,6( L L L L W ) of two actors, if they are in the same posture, s.t. Xk = Right Right Left Left k Palm Foot Foot Palm MY . As a consequence of this conjecture, we have the fol- J 9 J 13 J 12 J 8 lowing. First, if q and w describe the imaged positions of a) b) joints of two actors, a fundamental matrix F can be uniquely associated with (xk; yk), i.e. xk>Fyk = 0, if two actors are in the same posture, see Fig.1 c-d). Second, the fundamental matrix remains the same for all frames during the action as far as the actors perform the same action. 3. TRACKING We assume a model video corresponding to different actions is available in the database, and joint locations in the model video are known. The problem then is given an unknown test video, we need to simultaneously decide, which action it is c) and determine frame to frame joint correspondences. Suppose in a test and model video actors perform the same action. Known image location of the joint k in the frame i of k the model video is denoted by yi , and unknown image lo- cation of the joint k in the frame j of the test video is de- k noted by xj . Assuming the joint locations in each frame i of the model video and an initial correspondence among joints, 1 2 n 1 2 n w1 = fy1; y1;:::; y1 g and q1 = fx1; x1;:::; x1 g, between the first two frames of the model and test video are known, we propose an algorithm for the joints tracking in the test video. Since we know enough number of joint correspondences be- tween two starting postures of both actors, the fundamental d) matrix, F, can be recovered. Thus, kth joint location in the k Fig. 1. a) Point-based representation. b) Pictorial structure showing frame i, yi , of the model video corresponds to the epipolar k th joints and corresponding links. c-d) The fundamental matrix cap- line, lj , passing through k joint location in some frame j tures the relationship between joints of two different actors that are of the test video. From fundamental matrix, F, we can com- k k in the same posture and the variability in proportion as well as the pute an epipolar line using lj = yi F. Thus, knowing F and change in viewpoint. c) An actor in two frames of the model video. imaged joint locations in the model video, it is possible to d) Another actor in the corresponding frames of the test video. The predict the joint locations in each frame of the test video. joint correspondences in first frames of model and test video were used to compute the fundamental matrix. The image on right in d) shows epipolar lines in different colors corresponding to joints in the 3.1. Locating joints in test video image on right in c). As it is clear that the joints in the test video lies Assume that joint correspondences between frames, fi in the on the corresponding epipolar lines. k k model and fj in the test video, are known, therefore yi Fxj = 0. We can impose constraints on the search space of joint lo- cations in frame fj+1 of the test video by using the known mogenous coordinates of a joint k. Each point represents a joint locations in frames fi+m of the model video, where m spatial coordinate of a joint as shown in Fig.1 a), and points is a length of the temporal window and m = 0;:::;T . For k are connected by links. Thus, a human body is represented as each joint, xj , the search space will be embedded between (e.g. 16 £ 16) window of the edge map centered around the joint location and its links in the first frame of the test video, see Fig.2 b). In order to find the match for the given joint in the current frame, we search for the location, which gives the minimum Hausdorff distance between the model template and the corresponding patches around the candidate location k (k;m) in the search space.
Recommended publications
  • Series 1100TDM Tandem MEGALUG Mechanical Joint Restraint
    Series 1100TDM Tandem MEGALUG® Mechanical Joint Restraint High Pressure Restraint for Ductile Iron Pipe Features and Applications: • For use on Ductile Iron Pipe 4 inch through 54 inch • High Pressure Restraint • Torque Limiting Twist-Off Nuts • Mechanical Joint follower gland incorporated into the restraint • MEGA-BOND® Coating System For more information on MEGA- BOND, visit our web site at www. ebaa.com • Minimum 2 to 1 Safety Factor Series 1112TDM restraining a mechanical joint fitting. • Constructed of A536 Ductile Iron Post Pressure Rating • EBAA-Seal™ Mechanical Nominal Pipe Shipping Assembly (PSI) Joint Gaskets are provided Size Weights* Deflection with all 1100TDM MEGALUG 4 21.6 3° 700 restraints. These are required 6 33.0 3° 700 to accommodate the pressure ratings and safety factors 8 40.0 3° 700 shown. 10 60.2 3° 700 12 75.0 3° 700 • New: High strength heavy hex 14 112.7 2° 700 machine bolts with T-nuts are 16 131.6 2° 700 provided to facilitate easier assembly due to the fittings 18 145.2 1½° 500 radius area prohibiting the use 20 166.6 1½° 500 longer T-bolts. 24 290.2 1½° 500 30 457.9 1° 500 • T-Nuts constructed of High 36 553.63 1° 500 Tensile Ductile Iron with Fluropolymer Coating. 42 1,074.8 1° 500 48 1,283.1 1° 500 For use on water or wastewater 54 1,445.32 ½° 400 pipelines subject to hydrostatic NOTE: For applications or pressures other than those shown please pressure and tested in accordance contact EBAA for assistance.
    [Show full text]
  • Chapter 14. Anthropometry and Biomechanics
    Table of contents 14 Anthropometry and biomechanics........................................................................................ 14-1 14.1 General application of anthropometric and biomechanic data .....................................14-2 14.1.1 User population......................................................................................................14-2 14.1.2 Using design limits ................................................................................................14-4 14.1.3 Avoiding pitfalls in applying anthropometric data ................................................14-6 14.1.4 Solving a complex sequence of design problems ..................................................14-7 14.1.5 Use of distribution and correlation data...............................................................14-11 14.2 Anthropometric variability factors..............................................................................14-13 14.3 Anthropometric and biomechanics data......................................................................14-13 14.3.1 Data usage............................................................................................................14-13 14.3.2 Static body characteristics....................................................................................14-14 14.3.3 Dynamic (mobile) body characteristics ...............................................................14-28 14.3.3.1 Range of whole body motion........................................................................14-28
    [Show full text]
  • MINED NORMAL PORTAL VEIN DIAMETER: RESULTS from a STUDY CONDUCTED in RAJASTHAN, INDIA Nidhi Lal *1, Vivek Lal 2, Sayantani Majumdar 3, Sreya Moitra 4
    International Journal of Anatomy and Research, Int J Anat Res 2018, Vol 6(3.3):5588-92. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2018.208 ANTHROPOMETRIC CORRELATES OF SONOGRAPHICALLY-DETER- MINED NORMAL PORTAL VEIN DIAMETER: RESULTS FROM A STUDY CONDUCTED IN RAJASTHAN, INDIA Nidhi Lal *1, Vivek Lal 2, Sayantani Majumdar 3, Sreya Moitra 4. *1 Demonstrator, College of Medicine & Sagore Datta Medical College, Kolkata, West Bengal, India. 2 National Medical Advisor, German Leprosy & TB Relief Association- India 3 Demonstrator, College of Medicine & Sagore Datta Medical College, Kolkata, West Bengal, India. 4 Assistant Professor, College of Medicine & Sagore Datta Medical College, Kolkata, West Bengal, India. ABSTRACT Background: Dilatation of portal vein is predictive of portal hypertension and therefore requires accurate standards for normal measurements. Despite several studies to determine portal vein diameters, there exist considerable variations across communities. Moreover, body builds have been found to correlate with different diseases. Purpose of study: We conducted a study among 200 normal participants belonging to Rajasthan in order to obtain data on sonographically measured diameters of portal vein and determine the association between portal vein diameters and age, sex, anthropometric measurements like height, weight, chest circumference, circumference at the transpyloric plane, circumference at the umbilicus and circumference at the hip. Results: We found that the mean portal vein diameter assessed ultrasonographically was 10.2 mm (SD 1.47 mm), with diameter ranging from 8.0 mm to 14.5 mm. Although, there was no statistically significant difference in portal vein diameter among the various age groups, a statistically significant difference was found between males and females.
    [Show full text]
  • Anthropometrical Orofacial Measurement in Children from Three to Five Years Old
    899 MEDIDAS ANTROPOMÉTRICAS OROFACIAIS EM CRIANÇAS DE TRÊS A CINCO ANOS DE IDADE Anthropometrical orofacial measurement in children from three to five years old Raquel Bossle(1), Mônica Carminatti(1), Bárbara de Lavra-Pinto(1), Renata Franzon (2), Fernando de Borba Araújo (3), Erissandra Gomes(3) RESUMO Objetivo: obter as medidas antropométricas orofaciais em crianças pré-escolares de três a cinco anos e realizar a correlação com idade cronológica, gênero, raça e hábitos orais. Métodos: estudo transversal com 93 crianças selecionadas por meio de amostra de conveniência consecutiva. Os responsáveis responderam a um questionário sobre os hábitos orais e as crianças foram submetidas a uma avaliação odontológica e antropométrica da face. O nível de significância utilizado foi p<0,05. Resultados: as médias das medidas antropométricas orofaciais foram descritas. Houve diferença estatística nas medidas de altura da face (p<0,001), terço médio da face (p<0,001), canto externo do olho até a comissura labial esquerda/direita (p<0,001) e lábio inferior (p=0,015) nas faixas etárias. O gênero masculino apresentou medidas superiores na altura de face (p=0,003), terço inferior da face (p<0,001), lábio superior (p=0,001) e lábio inferior (p<0,001). Não houve diferença estatisticamente significante na altura do lábio superior em sujeitos não brancos (p=0,03). A presença de hábitos orais não influenciou os resultados. O aleitamento materno exclusivo por seis meses influenciou o aumento da medida de terço médio (p=0,022) e da altura da face (p=0,037). Conclusão: as médias descritas neste estudo foram superiores aos padrões encontrados em outros estudos.
    [Show full text]
  • Medical Terminology Abbreviations Medical Terminology Abbreviations
    34 MEDICAL TERMINOLOGY ABBREVIATIONS MEDICAL TERMINOLOGY ABBREVIATIONS The following list contains some of the most common abbreviations found in medical records. Please note that in medical terminology, the capitalization of letters bears significance as to the meaning of certain terms, and is often used to distinguish terms with similar acronyms. @—at A & P—anatomy and physiology ab—abortion abd—abdominal ABG—arterial blood gas a.c.—before meals ac & cl—acetest and clinitest ACLS—advanced cardiac life support AD—right ear ADL—activities of daily living ad lib—as desired adm—admission afeb—afebrile, no fever AFB—acid-fast bacillus AKA—above the knee alb—albumin alt dieb—alternate days (every other day) am—morning AMA—against medical advice amal—amalgam amb—ambulate, walk AMI—acute myocardial infarction amt—amount ANS—automatic nervous system ant—anterior AOx3—alert and oriented to person, time, and place Ap—apical AP—apical pulse approx—approximately aq—aqueous ARDS—acute respiratory distress syndrome AS—left ear ASA—aspirin asap (ASAP)—as soon as possible as tol—as tolerated ATD—admission, transfer, discharge AU—both ears Ax—axillary BE—barium enema bid—twice a day bil, bilateral—both sides BK—below knee BKA—below the knee amputation bl—blood bl wk—blood work BLS—basic life support BM—bowel movement BOW—bag of waters B/P—blood pressure bpm—beats per minute BR—bed rest MEDICAL TERMINOLOGY ABBREVIATIONS 35 BRP—bathroom privileges BS—breath sounds BSI—body substance isolation BSO—bilateral salpingo-oophorectomy BUN—blood, urea, nitrogen
    [Show full text]
  • About Your Knee
    OrthoInfo Basics About Your Knee What are the parts of the knee? Your knee is Your knee is made up of four main things: bones, cartilage, ligaments, the largest joint and tendons. in your body Bones. Three bones meet to form your knee joint: your thighbone and one of the (femur), shinbone (tibia), and kneecap (patella). Your patella sits in most complex. front of the joint and provides some protection. It is also vital Articular cartilage. The ends of your thighbone and shinbone are covered with articular cartilage. This slippery substance to movement. helps your knee bones glide smoothly across each other as you bend or straighten your leg. Because you use it so Two wedge-shaped pieces of meniscal cartilage act as much, it is vulnerable to Meniscus. “shock absorbers” between your thighbone and shinbone. Different injury. Because it is made from articular cartilage, the meniscus is tough and rubbery to help up of so many parts, cushion and stabilize the joint. When people talk about torn cartilage many different things in the knee, they are usually referring to torn meniscus. can go wrong. Knee pain or injury Femur is one of the most (thighbone) common reasons people Patella (kneecap) see their doctors. Most knee problems can be prevented or treated with simple measures, such as exercise or Articular cartilage training programs. Other problems require surgery Meniscus to correct. Tibia (shinbone) 1 OrthoInfo Basics — About Your Knee What are ligaments and tendons? Ligaments and tendons connect your thighbone Collateral ligaments. These are found on to the bones in your lower leg.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Monitoring Methods of Human Body Joints: State-Of-The-Art and Research Challenges
    sensors Review Monitoring Methods of Human Body Joints: State-of-the-Art and Research Challenges Abu Ilius Faisal 1, Sumit Majumder 1 , Tapas Mondal 2, David Cowan 3, Sasan Naseh 1 and M. Jamal Deen 1,* 1 Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; [email protected] (A.I.F.); [email protected] (S.M.); [email protected] (S.N.) 2 Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada; [email protected] 3 Department of Medicine, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-905-5259-140 (ext. 27137) Received: 26 April 2019; Accepted: 4 June 2019; Published: 10 June 2019 Abstract: The world’s population is aging: the expansion of the older adult population with multiple physical and health issues is now a huge socio-economic concern worldwide. Among these issues, the loss of mobility among older adults due to musculoskeletal disorders is especially serious as it has severe social, mental and physical consequences. Human body joint monitoring and early diagnosis of these disorders will be a strong and effective solution to this problem. A smart joint monitoring system can identify and record important musculoskeletal-related parameters. Such devices can be utilized for continuous monitoring of joint movements during the normal daily activities of older adults and the healing process of joints (hips, knees or ankles) during the post-surgery period. A viable monitoring system can be developed by combining miniaturized, durable, low-cost and compact sensors with the advanced communication technologies and data processing techniques.
    [Show full text]
  • Sticky Lips BBQ Virtual Tour Sticky Lips BBQ Point Your Phone at the Juke Joint QR Codes Below
    33 Taps! full bar! MUSEUM & BEER EMPORIUM Texas Style Dining Dine-in Counter Ordering or Full Service Slow Smokin’ the Best Grilled and Pit Styles from the Legendary Barbeque Regions Across America. Sticky Lips BBQ Virtual Tour Sticky Lips BBQ Point your phone at the Juke Joint QR Codes below. (585) 292-5544 830 Jefferson Road Henrietta, NY 14623 www.StickyLipsBBQ.com Take a virtual walk around the restaurant, courtesy of Virtual Space Productions! Visit our kissin’ cousin Sticky Soul & BBQ (585) 288-1910 625 Culver Rd. Rochester, 14609 www.StickySoulAndBBQ.com Experience the BLUES AND BBQ TOUR as a music video! 2021v17 French Fried Basket Home-Cut Style Fries.................................................... 5.49 Loaded with Chili, Cheddar Jack Cheese, Lip Smackers Onions, & Pickled Jalapenos................................ 9.49 Sweet Potato Fries......................................................... 5.49 Deep Fried Pickles NEW GIGANTIC Chicken Wings Kosher dill pickle spears, battered and breaded. Served with our spicy Cajun Buttermilk Ranch All orders served with SEASONED POTATO CHIPS. Dressing............................................................................ 8.29 Add THICK N’ CHUNKY BLUE CHEESE... 75¢ Small order... 8.49 Large... 14.99 Extra Large... 28.99 Mississippi Catfish Strips FRIED & GRILLED BBQ Fried then char-grilled. A Brother Wease favorite! Hand-cut catsh strips, Topped with our house-made BBQ sauce. battered and breaded in our special blend of our, and southern style spices. Served with our tangy BUFFALO STYLE Lightly seasoned, fried, and tossed Cajun tartar sauce. in wing sauce. Small (3 pieces)............................................... 8.39 Choose: BUFFALO SAUCE (medium) or SWEET & SOUR. Large (5 pieces)............................................ 12.49 Make it a meal! Add a side for 2.50 GARLIC PARMESAN Lightly seasoned, fried, and tossed in our garlic parmesan sauce.
    [Show full text]
  • Analysis of the Relationship Fatigue - Anthropometry-Desk Dimensions in Students of Industrial Engineering Program
    XV CONGRESO INTERNACIONAL DE ERGONOMIA SEMAC 2009 ANALYSIS OF THE RELATIONSHIP FATIGUE - ANTHROPOMETRY-DESK DIMENSIONS IN STUDENTS OF INDUSTRIAL ENGINEERING PROGRAM MC Jesús Rodolfo Guzmán Hernández1, MC Joaquín Vásquez Quiroga1, Dr. Enrique Javier de la Vega Bustillos2 1Programa de Ingeniería Industrial Universidad de Sonora Unidad Regional Norte, campus Caborca. Ave Universidad y calle Irigoyen S/N C. P. 83600 Caborca, Sonora, México, [email protected], [email protected] 2Maestría en sistemas Industriales Instituto Tecnológico de Hermosillo Ave. Tecnológico y Periférico Poniente S/N C.P. 83170 Hermosillo, Sonora, México [email protected] RESUMEN Actividades de los tutores del estudiante de Ingeniería Industrial ha puesto de manifiesto que algunos de ellos se quejan de cansancio, dolor de espalda y cuello después de clases. Mediante la aplicación de la encuesta Yoshitaka, H. (1978) a 56 estudiantes para detectar signos de fatiga al final de las clases, se encontró que 67,9% expresó sentir tensión muscular en los hombros y la espalda, y 89,3% expresó su necesidad de estirar los músculos. El objetivo de esta investigación fue estimar los parámetros antropométricos de altura poplítea, longitud nalga-poplíteo, altura de codo sentado y la anchura de la cadera de los estudiantes, así como las dimensiones de los escritorios utilizados y el cálculo de las relaciones entre ellos y comparándolos con las recomendaciones internacionales, demostrar que las mesas "tipo" utilizados por la población en estudio tiene desajustes con las medidas
    [Show full text]
  • 1 Lung Function in Children in Relation to Ethnicity, Physique and Socio
    Lung function in children in relation to ethnicity, physique and socio-economic factors Sooky Lum, Vassiliki Bountziouka, Samatha Sonnappa, Angie Wade, Tim J Cole, Seeromanie Harding, Jonathan CK Wells, Chris Griffiths, Philip Treleaven, Rachel Bonner, Jane Kirkby, Simon Lee, Emma Raywood, Sarah Legg, Dave Sears, Philippa Cottam, Colin Feyeraband and Janet Stocks Online data supplement 1 Introduction This OLS contains supplementary tables, illustrations and other details for which there was no room in the Main manuscript. 1. Materials and Methods: additional information 1.1. Pilot study A pilot study, funded by Asthma UK was undertaken between November 2010-October 2011 to assess feasibility and inform study design prior to undertaking the definitive study (subsequently awarded funding by the Wellcome Trust). Written parental consent was obtained from 201 (59%) of 340 children approached in two London schools. Acceptable spirometry data were available from 136 healthy children of Black- African origin and 21 non-Black children. The pilot study provided valuable experience and information regarding both practical issues, design of questionnaires and potential ways in which to improve consent rates for the definitive study. 1.2. Definitive study: School recruitment and assessments (October 2011 – July 2013) London schools with a high ethnic mix were identified and sampled by education performance within boroughs to ensure a wide range of socio-economic circumstances, prior to seeking approval from Head teachers for recruitment. An all-inclusive strategy was adopted to ensure no child would feel excluded from a study that was being undertaken in the school. Thus children who obtained parental consent in the 2nd year but not the 1st year of study were still eligible to participate.
    [Show full text]
  • Human Anatomy and Physiology
    LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students.
    [Show full text]