Supplementary Information s73

Supplementary Information

The chemical composition of native organic matter influences the response of bacterial community to input of biochar and fresh plant material

Congying Wang a,b, Craig Anderson c, Manuel Suárez-Abelenda d, Tao Wang a, Marta Camps-Arbestain a, *, Riaz Ahmad a,e, H.M.S.K. Herath a, f

a New Zealand Biochar Research Centre, Institute of Agriculture and Environment, Private Bag 11222, Massey University, Palmerston North 4442, New Zealand

b School of Environmental Science and Resources, Shanxi University, Taiyuan 030006, China

c The New Zealand Institute for Plant and Food Research, Private Bag 4704, Christchurch 8140, New Zealand.

d Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782- Santiago de Compostela, Spain

e Department of Soil Science & Soil Water Conservation, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan

f Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 9000, Sri Lanka

*Corresponding author: Marta Camps-Arbestain

E-mail:

Number of Tables: 5

Number of Figures: 7

Figure S1. Pyrophosphate-extractable C (A, B), dichromate-oxidisable C (C, D), and total C (E, F) content (in % w/w basis) of the Alfisol (TK) and the Andisol (EG) samples incubated in the respiration study and in the plant study at time 510 d. CS = corn stover, CS-350 = biochar produced from CS at a peak temperature of 350 °C, CS-550 = biochar produced from CS at a peak temperature of 550 °C. For a specific soil and study type, significant (P<0.05) differences based on Duncan post hoc test between means are denoted by different letters. For a given soil and study type, specific patterns in pyrophosphate-extractable C were observed, which contrast with their relatively similar total C and oxidisable C values. This extractant is considered to mostly release organic C associated to organo-metal complexes and that adsorbed on mineral surfaces, although its specificity is yet to be proven (Kögel-Knabner et al., 2008). These results evidence the existence of differences in the quality of the organic matter between treatments – and similarities among replicates of a specific treatment − and justify the pooling of samples from the same treatment.

Table S1. Percentage of the total quantified peak area of the major pyrolysis products grouped based on their possible sources (Buurman et al. 2007; Suárez-Abelenda et al. 2014) of a sample of a New Zealand soil treated and analysed as the soil samples of this study. The table shows that replicates from the same sample have similar peak areas, with CV generally being <10% (exceptions are products with low abundances). It should be noted that the conclusions of this study are drawn based on the factor analysis and RDA after the centre-log transformation of the data. Multivariate analyses such as these are likely to maximise the effect of the different treatments based on the overall data distribution rather than on the value of a specific compound. Therefore, it is reasonably safe to run a single subsample to represent a well-mixed soil sample via Py-GC/MS technique.

replicate / replicate / replicate / replicate / replicate / replicate / Average / SD / CV
%
Group / 1 / 2 / 3 / 4 / 5 / 6
Polysaccharides / 43.24% / 43.89% / 44.21% / 44.77% / 42.55% / 40.58% / 43.21% / 1.50% / 3.5
Phenol / 3.35% / 6.72% / 7.72% / 7.21% / 8.36% / 8.45% / 6.7% / 2.0% / 29.3
Aromatics / 13.99% / 13.19% / 12.90% / 11.35% / 12.67% / 13.71% / 12.8% / 1.0% / 7.5
Lignin / 4.43% / 4.34% / 4.33% / 5.90% / 5.95% / 4.50% / 5.0% / 0.9% / 17.1
Alkanes / 15.31% / 13.43% / 12.59% / 13.90% / 12.45% / 13.16% / 13.5% / 1.2% / 8.6
Alkenes / 10.98% / 9.48% / 9.02% / 7.89% / 8.73% / 9.78% / 9.2% / 1.1% / 12.4
N-compounds / 4.86% / 5.20% / 5.68% / 5.38% / 5.95% / 6.37% / 5.4% / 0.4% / 7.8
Fatty Acids / 0.19% / 0.24% / 0.23% / 0.21% / 0.19% / 0.27% / 0.2% / 0.0% / 10.4
Other alk / 0.43% / 0.37% / 0.39% / 0.42% / 0.41% / 0.25% / 0.4% / 0.0% / 5.6
Methyl ketones / 2.96% / 2.76% / 2.50% / 2.54% / 2.33% / 2.51% / 2.6% / 0.2% / 9.3
Other / 0.28% / 0.38% / 0.43% / 0.42% / 0.41% / 0.43% / 0.4% / 0.1% / 16.5
Sum / 100.00% / 100.00% / 100.00% / 100.00% / 100.00% / 100.00%

Table S2. Pyrolysis products

Pyrolysis product list obtained from the quantification of major peaks, with retention times (RT), fragments ion used for quantification (m/z) and % of total quantified peak area (mean and standard deviation for all studied samples).

Code / compounds / M+ / m/z / RT / % (Mean) / % (Standard deviation)
9:0-33:0 / alkanes. C9-C33 / 128-464 / 57+71 / 4.20 - 26.24 / 6.48 / 0.66
9:1-30:1 / alkenes. C9-C30 / 126-420 / 55+69 / 4.31 - 28.19 / 10.28 / 1.29
Al1 / branched alkene / - / 55+69 / 8.735 / 0.32 / 0.11
Al2 / prist-1-ene / 266 / 56+57 / 15.440 / 0.17 / 0.02
Al3 / branched alkene / - / 55+69 / 16.230 / 0.05 / 0.01
Al4 / branched alkene / - / 55+69 / 16.775 / 0.20 / 0.06
Al5 / branched alkene / - / 55+69 / 19.620 / 0.36 / 0.09
Al6 / branched alkene / - / 55+69 / 24.330 / 0.05 / 0.02
Al7 / branched alkene / - / 55+69 / 25.425 / 0.03 / 0.01
Al8 / branched alkene / - / 55+69 / 26.060 / 0.04 / 0.01
Al9 / squalene / 410 / 81+95 / 36.605 / 0.07 / 0.02
K13-K35 / methylketones. C13-C35 / 198-506 / 58+59 / 12.69 - 31.86 / 2.62 / 0.36
FA5-F24 / fatty acids. C5-C24 / 102-368 / 60+73 / 4.48 - 24.72 / 5.78 / 0.75
FA15i / iso-fatty acid C15 / 242 / 60+73 / 16.530 / 0.09 / 0.04
FA15a / ante iso-fatty. acid C15 / 242 / 60+73 / 16.615 / 0.20 / 0.03
FA16i / iso-fatty acid. C16 / 256 / 60+73 / 17.545 / 0.20 / 0.07
FA17i / iso-fatty acid. C17 / 270 / 60+73 / 18.530 / 0.04 / 0.01
FA17a / ante iso-fatty acid. C17 / 270 / 60+73 / 18.615 / 0.07 / 0.01
Ph1 / phenol / 94 / 66+94 / 5.635 / 3.89 / 0.84
Ph2 / 2-methylphenol / 108 / 107+108 / 6.665 / 0.43 / 0.10
Ph3 / 3/4-methylphenol / 108 / 107+108 / 7.020 / 2.25 / 0.41
Ph4 / 3-ethylphenol / 122 / 107+122 / 7.885 / 0.04 / 0.01
Ph5 / 3.4-dimethylphenol / 122 / 107+122 / 8.055 / 0.23 / 0.05
Ph6 / 4-ethylphenol / 122 / 107+122 / 8.380 / 0.51 / 0.12
Lg1 / guaiacol / 124 / 109+124 / 7.125 / 0.69 / 0.11
Lg2 / 4-methylguaiacol / 138 / 123+138 / 8.650 / 0.40 / 0.10
Lg3 / 4-vinylphenol / 120 / 91+120 / 9.240 / 1.87 / 0.67
Lg4 / 4-ethylguaiacol / 152 / 137+152 / 9.890 / 0.15 / 0.04
Lg5 / 4-vinylguaiacol / 150 / 135+150 / 10.405 / 1.79 / 0.27
Lg6 / syringol / 154 / 154+139 / 10.925 / 0.16 / 0.03
Lg7 / 4-methylsyringol / 168 / 153+168 / 12.170 / 0.11 / 0.03
Lg8 / 4-vinylsyringol / 180 / 180+165 / 13.655 / 0.20 / 0.04
Lg9 / 4-(-prop-1-enyl)syringol / 194 / 194+91 / 15.240 / 0.14 / 0.03
Ar1 / benzene / 78 / 77+78 / 2.210 / 1.23 / 0.24
Ar2 / toluene / 92 / 91+92 / 2.900 / 5.45 / 0.68
Ar3 / ethylbenzene / 106 / 91+106 / 3.875 / 0.36 / 0.07
Ar4 / dimethylbenzene / 106 / 91+106 / 3.980 / 0.40 / 0.11
Ar5 / styrene / 104 / 78+104 / 4.240 / 1.42 / 2.30
Ar6 / dimethylbenzene / 106 / 91+106 / 4.285 / 0.36 / 0.06
Ar7 / acetophenone / 120 / 77+105 / 6.770 / 0.33 / 0.04
B3 / benzene. C3 / 120 / 91+92 / 5.085 / 0.12 / 0.02
B4 / benzene. C4 / 134 / 91+92 / 6.580 / 0.10 / 0.01
B4:1 / benzene. C4:1 (3-butenyl-) / 132 / 91+132 / 6.390 / 0.09 / 0.04
B5-B28 / benzenes. C5-C28 / 148-470 / 91+92 / 8.08 - 30.12 / 0.87 / 0.18
B17:2 / benzene. C17:2 / 314 / 91+92 / 22.320 / 0.11 / 0.40
PA1 / indene / 116 / 115+116 / 6.440 / 0.34 / 0.06
PA2 / 1-methyl-1H-indene / 130 / 115+130 / 8.005 / 0.15 / 0.02
PA3 / 2-methyl-1H-indene / 130 / 115+130 / 8.095 / 0.14 / 0.02
PA4 / 3-methyl-1H-indene / 130 / 115+130 / 8.235 / 0.03 / 0.00
PA5 / biphenyl / 154 / 153+154 / 11.280 / 0.04 / 0.01
PA6 / fluorene / 166 / 165+166 / 13.925 / 0.07 / 0.01
PA7 / fluorene. C1 / 180 / 165+180 / 14.165 / 0.01 / 0.00
PA8 / phenanthrene / 178 / 178 / 16.220 / 0.03 / 0.01
PA9 / anthracene / 178 / 178 / 16.330 / 0.01 / 0.00
NA / naphthalene / 128 / 128 / 7.045 / 0.36 / 0.10
NA1 / naphthalene. C1 / 142 / 141+142 / 9.700 / 0.30 / 0.05
NA1 / naphthalene. C1 / 142 / 141+142 / 10.145 / 0.14 / 0.02
NA1 / naphthalene. C1 / 142 / 141+142 / 10.380 / 0.11 / 0.01
NA2 / naphthalene. C2 / 156 / 141+156 / 12.305 / 0.20 / 0.03
NA3 / naphthalene. C3 / 170 / 155+170 / 13.250 / 0.01 / 0.00
NA3 / naphthalene. C3 / 170 / 155+170 / 13.455 / 0.01 / 0.00
NA3 / naphthalene. C3 / 170 / 155+170 / 13.970 / 0.01 / 0.00
N1 / pyrrole / 67 / 67 / 2.805 / 1.24 / 0.61
N2 / pyridine / 79 / 52+79 / 2.760 / 1.32 / 0.26
N3 / pyrrole. C1 / 81 / 80+81 / 3.635 / 0.30 / 0.12
N4 / pyrrole. C1 / 81 / 80+81 / 3.725 / 0.55 / 0.19
N5 / acetamide / 59 / 59 / 3.825 / 2.64 / 1.05
N6 / benzonitrile / 103 / 76+103 / 5.575 / 0.07 / 0.03
N7 / benzeneacetonitrile / 117 / 90+117 / 7.870 / 0.10 / 0.08
N8 / indole / 117 / 117+90 / 10.220 / 0.50 / 0.06
N9 / indole. C1 / 131 / 130+131 / 11.450 / 0.27 / 0.07
N10 / 4-phenylpyridine / 155 / 154+155 / 12.465 / 0.03 / 0.02
N11 / diketodipyrrole / 186 / 93+186 / 15.410 / 0.45 / 0.17
N12 / diketopiperazine compound / 194 / 70+194 / 18.045 / 0.66 / 0.15
AM20-AM22 / amides. C20 -C22 / 311-339 / 59+72 / 23.45 - 24.98 / 0.15 / 0.02
AM26 / amide. C26 / 395 / 59+72 / 27.750 / 0.09 / 0.02
AM28-AM34 / amides. C28-C34 / 451-507 / 59+72 / 29.17 - 36.53 / 0.45 / 0.13
Ps1 / acetic acid / 60 / 60 / 2.280 / 6.35 / 0.92
Ps2 / furan-3-one / 84 / 54+84 / 3.250 / 3.64 / 1.16
Ps3 / 3-furaldehyde / 96 / 95+96 / 3.315 / 0.32 / 0.08
Ps4 / 2-furaldehyde / 96 / 95+96 / 3.555 / 6.91 / 1.73
Ps5 / 2-methyl-2-cyclopenten-1-one / 96 / 67+96 / 4.450 / 0.12 / 0.02
Ps6 / 5-methyl 2-furfuraldehyde / 110 / 109+110 / 5.240 / 2.07 / 0.55
Ps7 / 4-hydroxy-5.6-dihydro-(2H)-pyran-2-one / 114 / 58+114 / 5.825 / 2.25 / 0.71
Ps8 / 2-hydroxy-3-methyl 2-cyclopenten-1-one / 112 / 55+112 / 6.275 / 0.23 / 0.06
Ps9 / levoglucosenone / 126 / 68+98 / 6.340 / 0.10 / 0.05
Ps10 / dianhydrorhamnose / 128 / 113+128 / 6.430 / 0.72 / 0.19
Ps11 / 7-methylbenzofuran / 132 / 131+132 / 7.325 / 0.06 / 0.01
Ps12 / 2-methylbenzofuran / 132 / 131+132 / 7.390 / 0.11 / 0.03
Ps13 / dimetilbenzofuran / 146 / 145+146 / 8.860 / 0.04 / 0.01
Ps14 / dimetilbenzofuran / 146 / 145+146 / 8.980 / 0.10 / 0.02
Ps15 / dianhydro-alpha-D-glucopyranose / 144 / 69+57 / 9.205 / 1.28 / 0.16
Ps16 / dibenzofuran / 168 / 168+139 / 13.105 / 0.04 / 0.01
Ps17 / levoglucosan / 162 / 60+73 / 14.225 / 13.59 / 3.68
Ps18 / furan. C14 / 264 / 81+95 / 17.310 / 0.07 / 0.01
St1 / sterol-derived compound / 396 / 145+147 / 27.165 / 0.03 / 0.01
St2 / sterol-derived compound / 410 / 174+161 / 29.420 / 0.04 / 0.02
St3 / sterol-derived compound / - / 397+398 / 34.740 / 0.21 / 0.24

Factors

Name Abbrev. Type Levels

Soil Type So Fixed 2

Organic Amendment Oa Fixed 4

Study Type St Fixed 2

PERMANOVA table of results

Unique

Source df SS MS Pseudo-F P(perm) perms

So 1 32011 32011 26.346 0.001 998

Oa 3 8592.2 2864.1 2.3572 0.001 999

St 1 10956 10956 9.0175 0.001 999

SoxOa 3 9330.8 3110.3 2.5598 0.001 996

SoxSt 1 10450 10450 8.601 0.001 999

OaxSt 3 4864.8 1621.6 1.3346 0.083 998

SoxOaxSt 3 6184 2061.3 1.6965 0.011 998

Res 73 88696 1215

Total 88 1.727E5

Figure S2. MDS ordination of all ARISA data and 3-factor PERMANOVA of the Bray Curtis similarity measures. Bacterial community profiles were analysed using ARISA and then compared using Bray Curtis similarity. MDS is unconstrained and represents the results from 250 restarts. TK = Tokomaru silt loam soil, EG = Egmont black loam soil, R = respiration study, P = planted study, CS = corn stover, CS-350 = biochar produced from CS at a peak temperature of 350 °C, CS-550 = biochar produced from CS at a peak temperature of 550 °C.


Percentage of variation explained by individual axes

% explained variation % explained variation

out of fitted model out of total variation

Axis Individual Cumulative Individual Cumulative

1 47.01 47.01 19.00 19.00

2 27.87 74.88 11.27 30.27

3 13.72 88.60 5.55 35.82

4 4.51 93.11 1.82 37.64

5 3.96 97.07 1.60 39.25

6 2.04 99.11 0.83 40.07

7 0.89 100 0.36 40.43

Figure S3. dbRDA plot and variation partitioning for DISTLM modelling (multiple regression) of the relationship between the multivariate data cloud of ARISA profiles from EG (Andisol) soil and SOM predictor variables from the pyGCMS analysis. R = respiration study, P = planted study, CS = corn stover, CS-350 = biochar produced from CS at a peak temperature of 350 °C, CS-550 = biochar produced from CS at a peak temperature of 550 °C. Thirteen predictor variables were used that represented combinations of similar compounds detected in the pyGCMS analysis. This model was used to investigate specific SOM drivers associated with samples from the respiration study versus samples from the planted study. The model was run using the ‘Best’ procedure which examines the value of the selection criterion for all possible combinations of predictor variables to produce the model with the lowest residual SS. ‘Adjusted R2’ was used as the selection criterion because it only accounts for the combination of predictor variables used.