Automated Fortran–C++ Bindings for Large-Scale Scientific Applications

Automated Fortran–C++ Bindings for Large-Scale Scientific Applications

Automated Fortran–C++ Bindings for Large-Scale Scientific Applications Seth R Johnson HPC Methods for Nuclear Applications Group Nuclear Energy and Fuel Cycle Division Oak Ridge National Laboratory ORNL is managed by UT–Battelle, LLC for the US Department of Energy github.com/swig-fortran Overview • Introduction • Tools • SWIG+Fortran • Strategies • Example libraries 2 Introduction 3 How did I get involved? • SCALE (1969–present): Fortran/C++ • VERA: multiphysics, C++/Fortran • MPACT: hand-wrapped calls to C++ Trilinos 4 Project background • Exascale Computing Project: at inception, many scientific app codes were primarily Fortran • Numerical/scientific libraries are primarily C/C++ • Expose Trilinos solver library to Fortran app developers: ForTrilinos product 5 ECP: more exascale, less Fortran Higher-level { }Fortran ECP application codes over time (credit: Tom Evans) 6 Motivation • C++ library developers: expand user base, more F opportunities for development and follow-on funding • Fortran scientific app developers: use newly exposed algorithms and tools for your code C • Multiphysics project integration: in-memory coupling of C++ physics code to Fortran physics code • Transitioning application teams: bite-size migration from Fortran to C++ C++ 7 Tools 8 Wrapper “report card” • Portability: Does it use standardized interoperability? • Reusability: How much manual duplication needed for new interfaces? • Capability: Does the Fortran interface have parity with the C++? • Maintainability: Do changes to the C++ code automatically update the Fortran interface? • Robustness: Is it possible for silent failures to creep in? • Integration: How much overhead is needed to get the glue code working in development/deployment? 9 Hand-rolled binding code Portability � • Often based on hand-rolled C interface layer Reusablity � • Often targets F77/90 using configure-time bindings Capability � Maintainability � • Examples: SuperLU, STRUMPACK, TASMANIAN Robustness � Integration �/� 10 Project-specific scripts • Text processing engines hardcoded to a Portability � particular project’s data types, header Reusablity � formatting Capability � • Simple translations of function signatures Maintainability and types to “glue code” � Robustness � • Examples: MPICH, HDF5, Silo, PETSc Integration �/� 11 Automated code generators (manual C++ declaration) Portability � • CIX: in-house ORNL tool Reusablity � (template substitution) Capability � • Shroud: recent LLNL development Maintainability � (custom YAML) Robustness � Integration �/� 12 Automated code generators (integrated C++ parsing) Portability � Reusablity � Capability � • SWIG+Fortran: fork of Simplified Wrapper Interface Generator Maintainability � Robustness � Integration � 13 SWIG+Fortran 14 Supported SWIG: Simplified Wrapper and Interface Generator Languages • Allegro CL • C# • CFFI • CLISP • • Chicken Generate interfaces to existing C and C++ code and data • D types so that a target language can invoke functions and use • Go • Guile the data • Java • Javascript • “Glue” code: flat C-linkage wrappers to C++ functions, • Lua • Modula-3 corresponding interfaces in target language • Mzscheme • OCAML • Does not couple target languages to other target languages • Octave • Perl • Does not parse target languages or create C++ proxy • PHP • Python wrappers • R • Ruby • Scilab • Tcl • UFFI 15 SWIG execution sequence • SWIG reads .i interface file which may %include other C/C++ headers to parse them • Interface file can be as little as a couple of lines for simple interfaces • More difficult C++/Fortran conversions require more interface code • SWIG generates source code files: .cxx and .f90 • This wrapper code can be distributed like regular source files • Library users don’t need to know SWIG User-written code SWIG-generated code Foo.cxx Foo.hh SWIG foo.f90 main.f90 Foo.i foo_wrap.cxx 16 Control flow and data conversion Call “native” procedure user.f90 Public module procedure Convert Fortran types to ISO_C_BINDING types module.f90 Call BIND(C) interface • Fortran 2003 standard defines C-compatible datatypes • Use only Fortran-compatible ISO C datatypes extern "C" wrapper function Convert C type to C++ type • Minimize data movement of numerical arrays Call C++ library function module_wrap.cxx C++ Library code library.cxx 17 Features • Primitive types • Function overloading • Enumerations • Template instantiation • Classes (with inheritance) • Compile-time constants • C strings and std::string • Exception handling • Function pointers • OpenACC and Thrust • Arrays and std::vector 18 Addition with “native” int: input and generated C code F/C interface #ifndef simplest_h SWIGEXPORT int _wrap_add( #define simplest_h int const *farg1, int add(int a, int b); #endif int const *farg2) { int fresult ; Input argument int arg1 ; conversion simplest.h int arg2 ; int result; arg1 = (int)(*farg1); arg2 = (int)(*farg2); %module simplest Wrapped result = (int)add(arg1,arg2); function call %typemap(ftype, in="integer, intent(in)") fresult = (int)(result); int "integer" return fresult; %typemap(fin) int "$1 = int($input, C_INT)" %typemap(fout) int "$result = int($1)" } %include "simplest.h" simplest.i Output simplest_wrap.c argument conversion 19 Addition with “native” int: generated Fortran Fortran proxy function module simplest .... use, intrinsic :: ISO_C_BINDING F/C implicit none interface function add(a, b) & private result(swig_result) public :: add integer :: swig_result interface integer, intent(in) :: a function swigc_add(farg1, farg2) & integer, intent(in) :: b bind(C, name="_wrap_add") & integer(C_INT) :: fresult Input result(fresult) integer(C_INT) :: farg1 argument integer(C_INT), intent(in) :: farg1 integer(C_INT) :: farg2 integer(C_INT), intent(in) :: farg2 conversion integer(C_INT) :: fresult farg1 = int(a, C_INT) Wrapper end function farg2 = int(b, C_INT) function call end interface fresult = swigc_add(farg1, farg2) contains Output swig_result = int(fresult) argument end function .... conversion end module simplest.f90 20 Simple addition function: the part app devs care about SWIGEXPORT int swigc_add(int const *farg1, program main int const *farg2); use simplest, only : add write (0,*) add(10, 20) end program simplest_wrap.c module simplest use, intrinsic :: ISO_C_BINDING main.f90 … contains function add(a, b) & result(swig_result) integer :: swig_result integer, intent(in) :: a integer, intent(in) :: b … end function $ ./main.exe end module simplest.f90 30 21 Automatic BIND(C) wrapping %module bindc module bindc Only generate … interface code type, bind(C), public :: Point %fortranbindc; real(C_FLOAT), public :: x %fortran_struct(Point) real(C_FLOAT), public :: y Don’t create real(C_FLOAT), public :: z proxy class end type Point %inline { … interface typedef struct { float x, y, z; } Point; subroutine print_point(p) & void print_point(const Point* p); bind(C, name="print_point") void make_point(Point* pt, use, intrinsic :: ISO_C_BINDING import :: point const float xyz[3]); type(Point), intent(in) :: p } end subroutine subroutine make_point(pt, xyz) & bind(C, name="make_point") use, intrinsic :: ISO_C_BINDING import :: point type(Point) :: pt real(C_FLOAT), dimension(3), intent(in) :: xyz end subroutine end interface bindc.i end module bindc.f90 22 Templated class template<typename T> Insert raw C++ %module "templated" Tell SWIG to class Thing { code into parse the T val_; generated %{ header file public: wrapper file #include "templated.hpp" Thing(T val); %} T get() const; %include "templated.hpp" }; // Instantiate templated classes template<typename T> %template(Thing_Int) Thing<int>; void print_thing(const Thing<T>& t); %template(Thing_Dbl) Thing<double>; // Instantiate and overload a function Instantiate %template(print_thing) print_thing<int>; templates %template(print_thing) print_thing<double>; at SWIG time templated.i 23 Templated class: generated Fortran wrapper code Memory module templated ownership interface print_thing … module procedure swigf_print_thing__SWIG_1, integer, parameter, public :: swig_cmem_own_bit = 0 swigf_print_thing__SWIG_2 integer, parameter, public :: swig_cmem_rvalue_bit = 1 end interface public :: print_thing type, bind(C) :: SwigClassWrapper interface Overloaded type(C_PTR), public :: cptr = C_NULL_PTR subroutine swigc_delete_Thing_Int(farg1) & integer(C_INT), public :: cmemflags = 0 bind(C, name="_wrap_delete_Thing_Int") function end type Opaque class … ! class Thing< int > contains type, public :: Thing_Int wrapper subroutine swigf_release_Thing_Int(self) type(SwigClassWrapper), public :: swigdata Call delete if use, intrinsic :: ISO_C_BINDING contains we “own” procedure :: get => swigf_Thing_Int_get class(Thing_Int), intent(inout) :: self procedure :: release => swigf_release_Thing_Int type(SwigClassWrapper) :: farg1 the memory procedure, private :: swigf_Thing_Int_op_assign__ farg1 = self%swigdata generic :: assignment(=) => swigf_Thing_Int_op_assign__ if (btest(farg1%cmemflags, swig_cmem_own_bit)) then end type Thing_Int call swigc_delete_Thing_Int(farg1) interface Thing_Int endif module procedure swigf_create_Thing_Int Fortran farg1%cptr = C_NULL_PTR end interface farg1%cmemflags = 0 ! class Thing< double > proxy class self%swigdata = farg1 type, public :: Thing_Dbl Second end subroutine … template … end type Thing_Dbl instantiation end module … templated.f90 (2/2) 24 Exception handling %module except program main %include <std_except.i> use except, only : do_it, do_it_again, ierr, get_serr %exception { call do_it(-3) SWIG_check_unhandled_exception();

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us