Linear Inverted Pendulum Model and Swing Leg Dynamics in Biped Robot Walking Trajectory Generation

Linear Inverted Pendulum Model and Swing Leg Dynamics in Biped Robot Walking Trajectory Generation

LINEAR INVERTED PENDULUM MODEL AND SWING LEG DYNAMICS IN BIPED ROBOT WALKING TRAJECTORY GENERATION by UTKU SEVEN Submitted to the Graduate School of Engineering and Natural Sciences in partial fulfillment of the requirements for the degree of Master of Science Sabanci University July 2007 LINEAR INVERTED PENDULUM MODEL AND SWING LEG DYNAMICS IN BIPED ROBOT WALKING TRAJECTORY GENERATION APPROVED BY: Assist. Prof. Dr. Kemalettin ERBATUR (Thesis Advisor) …………………………………….. Prof. Dr. Asif. ŞABANOVİÇ …………………………………….. Assoc. Prof. Dr. Mustafa ÜNEL ……………………………………... Assist. Prof. Dr. Ahmet ONAT ……………………………………... Assist. Prof. Dr. Albert LEVI …………………………………….. DATE OF APPROVAL: …………………………………….. ©Utku SEVEN 2007 All Rights Reserved LINEAR INVERTED PENDULUM MODEL AND SWING LEG DYNAMICS IN BIPED ROBOT WALKING TRAJECTORY GENERATION Utku SEVEN EECS, Ms Thesis, 2007 Thesis Supervisor: Assist. Prof. Dr. Kemalettin ERBATUR Keywords: Linear Inverted Pendulum Model, Zero Moment Point, state-space representation, swing leg gravity compensation ABSTRACT Expectations of people and researchers from robotics have changed in the last four decades. Although robots are used to play their roles in the industrial environment, they are anticipated to meet social demands of people in daily life. Therefore, the interest in humanoid robotics has been increasing day by day. Their use for elderly care, human assistance, rescue, hospital attendance and many other purposes is suggested due to their adaptability and human like structure. Biped reference trajectory generation is a challenging task as well as control owing to the instability trend, non-linear robot dynamics and high number of degrees of freedom. Hence, the generated reference trajectories have to be followed with minimum control interference. Linear Inverted Pendulum Model (LIPM) is used to meet this demand which assumes the body as a falling point mass connected to the ground with a massless rod. The Zero Moment Point (ZMP) is a stability criterion for legged robots which provides a more powerful, stable reference generation. With the assistance of this methodology, advanced Linear Inverted Pendulum Models are implemented. This thesis aims to improve the applicability of the versatile and computationally effective LIPM based reference generation approach for the robots with heavy legs. It proposes a swing-leg gravity compensation technique based on a two-mass linear inverted pendulum model which is simulated on a discrete state space model. LIPM modeling is implemented by switching between one-mass and two-mass models during double support and single support phases, respectively. The joint trajectories are then obtained by inverse kinematics and PID controllers are employed independently at joint level for locomotion. The effectiveness of the generated reference trajectories is verified by simulation. The reference generation and control algorithm is tested with a 3-D full dynamic simulator on the model of a 12 DOF biped robot. Results indicate better performance of the one-mass-two- mass switching LIPM over the one-mass LIPM. iv DOĞRUSAL TERS SARKAÇ MODELİ VE İKİ BACAKLI YÜRÜYEN ROBOTLARDA YÖRÜNGE ELDE EDİLMESİNDE SALINAN BACAK DİNAMİĞİ Utku SEVEN EECS, Master Tezi, 2007 Tez Danışmanı: Yrd. Doç. Dr. Kemalettin ERBATUR Anahtar Kelimeler: Doğrusal Ters Sarkaç Modeli, Sıfır Moment Noktası, durum-uzay gösterimi, salınan bacak yer çekimi telafisi ÖZET Son kırk yılda insanların ve araştırmacıların robotik biliminden beklentilerinde bir değişim olduğu görülmüştür. Robotların endüstrideki yerini göz önünde bulundurmakla beraber, insanların günlük hayatlarındaki isteklerini karşılamaları da beklenmektedir. Bu sebepten insansı robotlara olan ilgi gün ve gün artış göstermektedir. İnsanların yaşadığı ortamlar uyum sağlamaları ve insana benzer yapıları sebebiyle kurtarma çalışmaları, hasta bakıcılığı ve asistanlık gibi görevleri üstlenmeleri istenmektedir. Fakat lineer olmayan karasız dinamikleri ve çok sayıda eklemleri yüzünden kontrol edilmeleri çok zorlu bir görev olmakla beraber bu robotlar için yürüyüş referansı elde edimi de çok zordur. Bu yüzden yaratılan referansların izlenmesi için çok fazla kontrol müdahalesi gerekmemesi istenmektedir. Lineer Ters Sarkaç Modeli (LIPM) böyle referansların elde edilmesi için uygun bir altyapı sağlamaktadır. Bu modelde vücut bir noktasal ağırlık olarak kabul edilmekle beraber bacaklar da ağırlıksız çubuklar olarak modellenmektedir. Buna ek olarak Sıfır Moment Noktası (ZMP) da kararlı referans elde edilmesi için güçlü bir yöntem olmakla beraber robotun kararlılığı açısından çok önemli bir kriterdir. Bu kriter yardımıyla gelişmiş Lineer Ters Sarkaç Modelleri elde edilmiş ve uygulanmıştır. Bu tezin amacı ağır bacaklı robotlar için LIPM tabanlı, işlemsel uygulama açısından avantajlı olan ve çok yönlü bir referans oluşturma tekniği geliştirmektir. Bunun için ayrık zamanlı durum-uzay modellerine sahip çift noktasal ağırlık içeren bir LIPM modeli önermektedir. LIPM modeli uygulaması tek ayak destek ve çift ayak destek safhalarına göre sırasıyla tek ve çift noktasal ağırlıklı modeller arasında geçiş yardımıyla elde edilmiştir. Elde edilen referanstan ters kinematik yardımıyla eklem değişkenleri elde edilmiş ve her eklem için bağımsız PID denetleyicileri kullanılmıştır. Yaratılan referansın verimi benzetim yardımıyla doğrulanmıştır. Benzetim, bu referansların 12 serbestlik dereceli bir robotun 3B dinamik modeline uygulanması ile gerçekleştirilmiştir. Elde edilen sonuçlar kullanılan modelin tek ağırlıklı modele göre daha iyi sonuçlar verdiğini doğrulamaktadır. v To my family vi ACKNOWLEDGEMENTS It is a pleasure to thank the many people who made this thesis possible. It is difficult to overstate my gratitude to my MS. supervisor, Asst. Prof. Dr. Kemalettin ERBATUR. With his enthusiasm, his inspiration, and his great efforts to explain things clearly and simply, he made this thesis possible with the highest priority. Throughout my thesis-writing period, he provided encouragement, sound advice, good teaching, good company, and lots of good ideas. I would have been lost without him. I would like to express my deepest regards and appreciation to Assoc. Prof. Dr. Mustafa Ünel and Asst. Prof Dr. Güllü Kızıltaş Şendur for their invaluable support for the realization of my thesis. I am indebted to my many student colleagues for providing a stimulating and fun environment in which to learn and grow. I am especially grateful to Berk Çallı, Erol Özgür, Yeşim Hümay Esin, Hakan Bilen, Meltem Elitaş, Nusrettin Güleç, Emrah Deniz Kunt, Teoman Naskali and many other friends in Sabancı University mechatronics laboratories. Lastly, and most importantly, I wish to thank my parents, Ayşe Seven and Nedim Seven, my brother Özgür Seven and his wife Ipek Seven. They bore me, raised me, supported me, taught me, and loved me. To them I dedicate this thesis. vii LINEAR INVERTED PENDULUM MODEL AND SWING LEG DYNAMICS IN BIPED ROBOT WALKING TRAJECTORY GENERATION TABLE OF CONTENTS ABSTRACT.............................................................................................................................iv ÖZET......................................................................................................................................... v ACKNOWLEDGEMENTS ....................................................................................................vii TABLE OF CONTENTS.......................................................................................................viii LIST OF FIGURES..................................................................................................................ix LIST OF TABLES ..................................................................................................................xii LIST OF SYMBOLS .............................................................................................................xiii LIST OF ABBREVIATIONS ................................................................................................. xv 1.INTRODUCTION..................................................................................................................1 2.LITERATURE REVIEW....................................................................................................... 4 2.1. Humanoid Locomotion Terminology............................................................................ 4 2.2. History of Humanoid Walking Robots.......................................................................... 8 2.3. Biped Robot Walking Reference Generation.............................................................. 17 3.THE BIPEDAL HUMANOID ROBOT MODEL ............................................................... 23 3.1. The Kinematic Arrangement....................................................................................... 23 3.2. Dynamics Equations and Simulation Model............................................................... 27 3.3. Inverse Kinematics...................................................................................................... 29 4.REFERENCE GENERATION WITH SWING LEG COMPENSATION USING LIPM AND STATE SPACE REPRESENTATION ......................................................................... 36 4.1. ZMP and Foot Position Reference .............................................................................. 36 4.2. LIPM Model................................................................................................................ 40 4.3. State Space Representation and Reference Generation...............................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    84 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us