Lecture 2: Propagation of Light Waves and Pulses Petr Kužel

Lecture 2: Propagation of Light Waves and Pulses Petr Kužel

Lecture 2: Propagation of light waves and pulses Petr Kužel • Propagation of plane waves in linear homogeneous isotropic (LHI) media: ! refractive index ! intensity ! absorption • Propagation of light pulses: ! group velocity ! group dispersion — chirp ! superluminal effects (?) Wave equation ∂B ∂2 E N 2 ∂2 E ∇ ∧ E + = 0 ∇2 E − εµ = 0 ∇2 E − = 0 ∂ 0 ∂ 2 2 ∂ 2 t ⇒ t or c t ∂D ∂2 H N 2 ∂2 H ∇ ∧ H − = 0 ∇2 H − εµ = 0 ∇2 H − = 0 ∂t 0 ∂t 2 c2 ∂t 2 2 1 ( ∇ ∧ ()∇ ∧ E = ∇∇ ⋅ E − ∇ E ) ε = ε ε c = 0 r ε µ 0 0 well-known identity ε = ε′ − iε′′ r r r 2 = εµ 2 = ε N 0c r dielectric constant refractive index ε′ = 2 − κ2 ε′′ = κ r n , r 2n , = − κ N n i 1 1 n = ( ε′2 + ε′′2 + ε′ ) , κ = ( ε′2 + ε′′2 − ε′ ) 2 r r r 2 r r r Propagation in the vacuum 1 ∂2 E = i()ωt−k⋅r ∇2 − = E E0e E 2 2 0 ω c ∂t ≡ = 2 with k k 1 ∂ H () c ∇2 H − = 0 H = H ei ωt−k⋅r c2 ∂t 2 0 • Back to Maxwell’s equations: ∂B 1 ∇ ∧ E + = −ik ∧ E + iωµ H = 0 ()k ∧ E = H ∂ 0 µ ω 0 0 t 0 ∇ ⋅ E = −ik ⋅ E = 0 ⊥ ⊥ ⊥ k E0 H0 k s = k k = η−1 ()∧ H0 0 s E0 µ 0 − η = ≈ 377Ω = 1 ()∧ 0 ε B0 c s E0 0 Superpositions of plane waves •In the k-space: 3-dimensional ()= ()i()ωt−k⋅r E t,r ∫∫∫E0 k e dk ()= ()i()ωt−k⋅r H t,r ∫∫∫H0 k e dk ω = = •In the -space: 1-dimensional (propagation along z: kx ky 0) ()= ()ω i()ωt−kz ω E t, z ∫ E0 e d ()= ()ω i()ωt−kz ω H t, z ∫ H0 e d ω ω • Pulse: central frequency 0; central wave vector k0 = 0/c. ()ω − ()ω − ()()()ω−ω − − ()= ()i 0t k0z = i 0t k0z ()ω i 0 t k k0 z ω = E t, z E1 t, z e e ∫ E0 e d ()ω − ()ω−ω ()− ()ω − = i 0t k0z ()ω i 0 t z c ω = ()− i 0t k0z e ∫ E0 e d E1 t z c e Propagation in the matter N 2 ∂2 E = i()ωt−k⋅r ∇2 − = E E0e E 2 2 0 ω c ∂t ≡ = 2 2 with k k N N ∂ H () c ∇2 H − = 0 H = H ei ωt−k⋅r c2 ∂t 2 0 • Back to Maxwell’s equations: ∂B 1 ∇ ∧ E + = −ik ∧ E + iωµ H = 0 ()k ∧ E = H ∂ 0 µ ω 0 0 t 0 ∇ ⋅ E = −ik ⋅ E = 0 ⊥ ⊥ ⊥ k E0 H0 k s = k k N H = ()s ∧ E 0 η 0 η µ 0 η = 0 = 0 N N ε B = ()s ∧ E 0 c 0 Propagation direction (vector k) k = k′ − ik′′ • k' = n ω/c, k'' = κ ω/c • k' and k'' can have different different directions: ! k'∙r = const: constant phase planes ! k''∙r = const: constant amplitude planes • k'': boundary conditions of an absorbing sample k i α α kr n1 = − κ N2 n2 i 2 z k''t β' kt' y x Propagation direction (vector S) • Energy flow (Poynting vector S) = ∧ = 1 { ∧ ∗} S E H 2 Re E H 1 ∗ ∗ 1 ∗ ∗ ∗ ∗ S = Re{}E ∧ ()k ∧ E = Re{}k ()E ⋅ E − (k ⋅ E)E = 2ωµ 2ωµ #"! 0 0 0 1 ∗ − ′′⋅ k′ 2 − ′′⋅ = Re{}()k′ − ik′′ ()E ⋅ E e 2k r = E e 2k r ωµ 0 0 ωµ 0 2 0 2 0 • Propagation along z (k // z) − ω 2 − ωκ n 2 −α S = ()2ωµ 1 n E e 2 z c = E e z 0 0 η 0 c 2 0 ωκ πκ α()ω = 2 = 4 c λ Optical pulses: dispersion • Dispersion relation (non-absorbing medium): ω k = n()ω c • Optical pulse as a linear combination of eigenmodes: ()= ()i()ω()k t−kz = ()ω i()ωt−k()ω z ω E t, z ∫ E0 k e dk ∫ E0 e d ω ∆ω ω ∆ • Mean frequency 0 and wave vector k0: ‹‹ 0, k ‹‹ k0: ω 2ω β ω()= ω + d ()− + 1 d ()− 2 = ω + ()− + ()− 2 k 0 k k0 k k0 0 v g k k0 k k0 dk 2 2 2 0 dk 0 2 ψ ()ω = + dk ()ω − ω + 1 d k ()ω − ω 2 = + −1 ()ω − ω + ()ω − ω 2 k k0 0 0 k0 v g 0 0 dω 2 dω2 2 0 0 ψ = −β 3 v g … group velocity dispersion (GVD) Group velocity (first order effects) • Propagation of a pulse ∞ ∞ ()ω − i()v (k−k )t−(k−k )z ()ω − i(v t−z)(k−k ) ()= ()i 0 t k0z g 0 0 = i 0 t k0z () g 0 = E t, z ∫ E0 k e e dk e ∫ E0 k e dk −∞ −∞ ()ω − − ()− == ei 0t k0z E ()z −v t = e ik0 z vt E ()z −v t 1 g #$" $! 1 g ( A) #$" $! (B) •(A): field oscillation with the central frequency ω c v = 0 = wave front velocity: ω k0 n( ) •(B): propagation of envelope without deformation ω = d group velocity v g dk ω 0 ω c k = n()ω d dk ⇒ v = c g n + ωdn dω Optical pulses: energy flow • Poynting vector µ 1 0 n 2 − ωκ c = , η = S(z −v t) = E (z −v t) e 2 z / c ε µ 0 ε g η 1 g 0 0 0 2 0 • Energy conservation law ωκ ∂ U ω ∗ 1 d()ωε′ ∂E ∗ ∂E ∗ e2 z / c = ε′′E E + 1 ⋅ E + ε′ 1 ⋅ E = ∂t 2 1 1 2 dω ∂t 1 ∂t 1 ∗ ω ∂E ∗ = ω nκ ε E E + n2 + dn2 dω ε 1 ⋅ E 0 1 1 2 0 ∂t 1 #$"$ $!$ n()n+ωdn dω =nc vg n ∂ 2 − ωκ ∇ ⋅ S = E (z −v t) e 2 z / c = η ∂ 1 g 2 0 z ωnκ ∗ n ∂E ∗ − ωκ ∂ U = − E ⋅ E + 1 ⋅ E e 2 z / c = − η 1 1 η ∂ 1 ∂ 0c 0v g t t Group velocity dispersion GVD (second order effects) • Main effect: pulse broadening in time • This treatment is necessary for ! Ultrashort pulse (sub-50 fs) propagation ! Ultrashort pulse (ps or sub-ps) generation in lasers (multiple passes through dispersive media) ! Short pulse (sub-ns) propagation in fibers (extremely long distances) β ω()k = ω +v (k − k )+ ()k − k 2 0 g 0 2 0 − ψ k()ω = k +v 1 (ω− ω )+ ()ω − ω 2 0 g 0 2 0 Intuitive treatment • Spectral components coming from two ∆ω ends of the spectrum propagate with different velocities dv ∆ = g ∆ω ω z v v (ω ) vg( 2) g dω g 1 • GVD is defined as 2 d k d 1 1 dv g ψ = = = − ω ω2 ω 2 ω 0 ω d d v g v g d • Spreading due to a thickness L of the dispersive material: L L dv ψ L ∆τ ≈ ∆v = g ∆ω = L ψ ∆ω = 4ln 2 2 g 2 ω τ v g v g d 0 for a gaussian pulse shape Exact treatment • Superposition of the spectral components ∞ ∞ ()ω − ω ()ω − i(ω−ω )(t−z v ) iβz (2v3 ) (ω−ω )2 ()= ()ω i t k( )z ω = i 0 t k0z ()ω 0 g g 0 ω E t, z ∫ E0 e d e ∫ E0 e e d −∞ −∞ • One gets for a gaussian pulse for a crystal length L after all the integrations: α()t−z v 2 ()1−iδ − g ()ω − 1 (δ2 + ) 4ln 2 ψL E()t, z = Aei 0 t k0z e 1 with δ = 2αψL = + δ τ2 1 i 0 • Spreading due to a thickness L of the dispersive material: 2 4ln 2 ψL ψ τ()L = τ 1+ δ2 = τ 1+ ∆τ ≈ 4ln 2 L 0 0 τ2 τ 0 0 (intuitive treatment) z = 0 z = z 0 z = 2z0 z = 3z0 E (A) (B) (C) z ∂Φ ()t − z v 4α2 ψL ω()= = ω + g Mean frequency varies in time: z,t 0 ∂t 1+ ()2α ψL 2 ∂2Φ GDD = − = ψL Chirp (group delay dispersion): ∂ω2 Pulse spreading: example 120 Dispersion of a BK7 plate 100 80 60 Thickness: 10 mm Pulse length after the plate (fs) 40 6 mm 3 mm 20 20 40 60 80 100 Bandwidth-limited pulse length (fs) “Superluminal” effects • What can be superluminal? ! Phase velocity? ! Group velocity? ! Velocity of an information? • Definition of the speed of an information transfer Information speed Amplification process The noise can only slow down the information transfer Phase velocity k = 0, v = ∞ k cosθ, v/cosθ θ k, v Group velocity c v = g dn n + ω dω • Group velocity can exceed the vacuum speed of the light: ! region of anomalous dispersion " dielectric resonance " gain medium 10 10 Dielectric 8 8 resonance 6 6 4 4 refractive index • group velocity absorption index 2 2 c v = g dn 0 0 n + ω 0 1 2 3 4 dω Frequency (arb. u.) 1.5 3 λ c 1 • group velocity can be 2 0.5 superluminal 0 • penetration depth = 1 fraction of λ -0.5 group velocity normalized to penetration depth normalized to -1 0 0 1 2 3 4 Frequency (arb. u.) Gain-assisted superluminal light propagation L. J. Wang, A. Kuzmich & A. Dogariu NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540, USA Gain-assisted Measured pulse advancement Conclusion: anomalous dispersion: corresponds to a negative group • pulse maximum and velocity leading / trailing edge of the pulse are advanced • there is almost (!!) no change in the pulse shape • the very first non-zero signal can never (!!) be advanced.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us