Integration by Parts

Integration by Parts

3 Integration By Parts Formula ∫∫udv = uv − vdu I. Guidelines for Selecting u and dv: (There are always exceptions, but these are generally helpful.) “L-I-A-T-E” Choose ‘u’ to be the function that comes first in this list: L: Logrithmic Function I: Inverse Trig Function A: Algebraic Function T: Trig Function E: Exponential Function Example A: ∫ x3 ln x dx *Since lnx is a logarithmic function and x3 is an algebraic function, let: u = lnx (L comes before A in LIATE) dv = x3 dx 1 du = dx x x 4 v = x 3dx = ∫ 4 ∫∫x3 ln xdx = uv − vdu x 4 x 4 1 = (ln x) − dx 4 ∫ 4 x x 4 1 = (ln x) − x 3dx 4 4 ∫ x 4 1 x 4 = (ln x) − + C 4 4 4 x 4 x 4 = (ln x) − + C ANSWER 4 16 www.rit.edu/asc Page 1 of 7 Example B: ∫sin x ln(cos x) dx u = ln(cosx) (Logarithmic Function) dv = sinx dx (Trig Function [L comes before T in LIATE]) 1 du = (−sin x) dx = − tan x dx cos x v = ∫sin x dx = − cos x ∫sin x ln(cos x) dx = uv − ∫ vdu = (ln(cos x))(−cos x) − ∫ (−cos x)(− tan x)dx sin x = −cos x ln(cos x) − (cos x) dx ∫ cos x = −cos x ln(cos x) − ∫sin x dx = −cos x ln(cos x) + cos x + C ANSWER Example C: ∫sin −1 x dx *At first it appears that integration by parts does not apply, but let: u = sin −1 x (Inverse Trig Function) dv = 1 dx (Algebraic Function) 1 du = dx 1− x 2 v = ∫1dx = x ∫∫sin −1 x dx = uv − vdu 1 = (sin −1 x)(x) − x dx ∫ 2 1− x ⎛ 1 ⎞ = x sin −1 x − ⎜− ⎟ (1− x 2 ) −1/ 2 (−2x) dx ⎝ 2 ⎠∫ 1 = x sin −1 x + (1− x 2 )1/ 2 (2) + C 2 = x sin −1 x + 1− x 2 + C ANSWER www.rit.edu/asc Page 2 of 7 II. Alternative General Guidelines for Choosing u and dv: A. Let dv be the most complicated portion of the integrand that can be “easily’ integrated. B. Let u be that portion of the integrand whose derivative du is a “simpler” function than u itself. Example: ∫ x3 4 − x 2 dx *Since both of these are algebraic functions, the LIATE Rule of Thumb is not helpful. Applying Part (A) of the alternative guidelines above, we see that x 4 − x 2 is the “most complicated part of the integrand that can easily be integrated.” Therefore: dv = x 4 − x 2 dx u = x 2 (remaining factor in integrand) du = 2x dx 1 v = x 4 − x 2 dx = − (−2x)(4 − x 2 )1/ 2 dx ∫∫2 ⎛ 1 ⎞⎛ 2 ⎞ 1 = ⎜− ⎟⎜ ⎟ (4 − x 2 )3 / 2 = − (4 − x 2 )3 / 2 ⎝ 2 ⎠⎝ 3 ⎠ 3 ∫∫x3 4 − x3 dx = uv − vdu ⎛ 1 ⎞ 1 = (x 2 )⎜− (4 − x 2 )3 / 2 ⎟ − − (4 − x 2 )3 / 2 (2x) dx ⎝ 3 ⎠ ∫ 3 − x 2 1 = (4 − x 2 )3 / 2 − (4 − x 2 )3 / 2 (−2x) dx 3 3 ∫ − x 2 1 ⎛ 2 ⎞ = (4 − x 2 )3 / 2 − (4 − x 2 )5 / 2 ⎜ ⎟ + C 3 3 ⎝ 5 ⎠ − x 2 2 = (4 − x 2 )3 / 2 − (4 − x 2 )5 / 2 + C Answer 3 15 www.rit.edu/asc Page 3 of 7 III. Using repeated Applications of Integration by Parts: Sometimes integration by parts must be repeated to obtain an answer. Note: DO NOT switch choices for u and dv in successive applications. Example: ∫ x 2 sin x dx u = x 2 (Algebraic Function) dv = sin x dx (Trig Function) du = 2x dx v = ∫sin x dx = −cos x ∫ x 2 sin x dx = uv − ∫ vdu = x 2 (−cos x) − ∫ − cos x 2x dx = −x 2 cos x + 2 ∫ x cos x dx Second application of integration by parts: u = x (Algebraic function) (Making “same” choices for u and dv) dv = cos x (Trig function) du = dx v = ∫ cos x dx = sin x ∫ x 2 sin x dx = −x 2 cos x + 2 [uv − ∫ vdu] = −x 2 cos x + 2 [x sin x − ∫sin x dx] = −x 2 cos x + 2 [x sin x + cos x + c] = −x 2 cos x + 2x sin x + 2cos x + c Answer www.rit.edu/asc Page 4 of 7 Note: After each application of integration by parts, watch for the appearance of a constant multiple of the original integral. Example: ∫ e x cos x dx u = cos x (Trig function) dv = e x dx (Exponential function) du = −sin x dx v = ∫ e x dx = e x ∫ e x cos x dx = uv − ∫ vdu = cos x e x − ∫ e x (−sin x) dx = cos x e x + ∫ e x sin x dx Second application of integration by parts: u = sin x (Trig function) (Making “same” choices for u and dv) dv = e x dx (Exponential function) du = cos x dx v = ∫ e x dx = e x ∫ e x cos x dx = e x cos x + (uv − ∫ vdu) ∫ e x cos x dx = e x cos x + sin x e x − ∫ e x cos x dx Note appearance of original integral on right side of equation. Move to left side and solve for integral as follows: 2∫ e x cos x dx = e x cos x + e x sin x + C 1 e x cos x dx = (e x cos x + e x sin x) + C Answer ∫ 2 www.rit.edu/asc Page 5 of 7 Practice Problems: 1. ∫3x e −x dx ln x 2. dx ∫ x 2 3. ∫ x 2 cos x dx 4. ∫ x sin x cos x dx 5. ∫ cos −1 x dx 6. ∫ (ln x) 2 dx 7. ∫ x3 9 − x 2 dx 8. ∫ e 2x sin x dx 9. ∫ x 2 x −1 dx 1 10. dx ∫ x(ln x)3 www.rit.edu/asc Page 6 of 7 Solutions: 1. − 3xe−x − 3e− x + C u = 3x dv = e−x dx ln x 1 2. − − + C u = ln x x x 1 dv = dx x 2 3. x 2 sin x + 2x cos x − 2sin x + C u = x 2 dv = cos x dx x cos 2x sin 2x sin 2x 4. − + + C note: = sin x cos x 4 8 2 u = x dv = sin 2x cos x dx 5. x cos −1 x − 1− x 2 + C u = cos−1 x dv = dx 6. x(ln x) 2 − 2x ln x + 2x + C u = (ln x) 2 dv = dx x 2 2 7. − (9 − x 2 )3 / 2 − (9 − x 2 )5 / 2 + C u = x 2 3 15 dv = (4 − x 2 )1/ 2 x dx 2e 2x sin x e 2x cos x 8. − + C u = sin x 5 5 dv = e 2x dx 2x 2 (x −1)3 / 2 8x(x −1)5 / 2 16(x −1)7 / 2 9. − + + C u = x 2 3 15 105 dv = (x −1)1/ 2 dx −1 1 10. + C u = = (ln x) −3 2(ln x) 2 (ln x)3 1 dv = dx x www.rit.edu/asc Page 7 of 7 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us