Low Temperature Refrigeration Thermodynamics & Basics Main

Low Temperature Refrigeration Thermodynamics & Basics Main

Low temperature refrigeration Thermodynamics & Basics Dr. Alexander Alekseev Linde AG, Innovation Management Main Topics • Definitions, 1st and 2nd law of thermodynamics etc. • Cooling effects • Refrigeration processes / cycles • Helium Refrigeration 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 2 1 Thermodynamics & Basics • Cooling • Heat flows from warm to cold objects • Refrigerator 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 3 Refrigerator, Definition Qo P ??? 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 4 2 Refrigerator, 1st law Conservation of energy Qo P Qamb 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 5 Interfaces Cooling capacity Qo Waste heat [capacity] Qamb Power P Qo Qamb P 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 6 3 Refrigerator / Water pump analogy 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 7 The 1st law: P + Qo = Qamb Cooling Capacity: Qo = 100 W Cooling Temperature: To = 100 K P = 100 W Waste Heat Qamb = 200 W P = 1 W Waste Heat Qamb = 101 W Is it possible? 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 8 4 Refrigerator, Carnot equation Tamb To PMIN Qo To Qo = 100 W To = 100 K Tamb = 300 K 300 K 100 K P 100W 200 W MIN 100 K 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 9 Min. power requirements (min. power consumption) Liquid Liquid Liquid Nitrogen Hydrogen Helium (LIN) (LH2) (LHe) Cooling temperature 77.4 20.1 4.2 To, K Required cooling 100 100 100 capacity Qo, W Min. power 288 1393 7043 requirements P, W P / Qo 2.9 13.9 70.4 All numbers calculated for ambient temperature Tamb = 300 K 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 10 5 Exercise An older cooling system is available with: Cooling Capacity: Qo = 300 W Cooling Temperature: To = 4.5 K Ambient Temperature: Tamb = 293 K = ca. 20 Cels Revamp: 4.5 K 1.8 K 4.5 K – refrigerator: Pmin = 300 W (293 K - 4.5 K) / 4.5 K = 19 233 W = 19.2 kW 1.8 K – refrigerator: Pmin = 300 W (293 K - 1.8 K) / 1.8 K = 45 833 W = 45.8 kW 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 11 COP – coefficient of performance COP = What you get / What you pay for What you get: Cooling capacity Qo = 300 W What you pay for: Power consumption P = 75 kW (assumpt.) Q COP o P COP = Qo / P = 0.3 kW / 75 kW = 0.004 = 0.4 % 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 12 6 Carnot efficiency (or CF, FOM) Cooling Capacity: Qo = 300 W Power Consumption: P = 75 kW COP: 0.4% According to Carnot equation: Tamb To 293K 4.2K PMIN Qo 0.3kW 19.2kW To 4.2K COPMAX Qo / PMIN 0.3kW /19.2kW 0.0156 1.6% Efficiency: e COP /COPMAX e 0.4% /1.6% 0.25 25% 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 13 COOLING EFFECTS • Joule-Thomson expansion • Expansion in turbine • Mixing of different fluids • Simon cooling • Peltier cooling • Vortex tube • etc. 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 14 7 Joule Thomson Expansion (adiabatic & isenthalpic) FlaschenventilValve Joule Thomson Effect: T 2 T T 2 T1 Temperature measurementTemperatur- 200200 bar bar meßgerät StickstoffN2 Joule-Thomson Coefficient: Ambient temperature: 300 K T Umgebungstemperatur:Ambient pressure: 1 bar T = 300 K = 27 C 1 p h const Umgebungsdruck: 1 bar 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 15 Joule Thomson expansion (adiabatic & isenthalpic) temperature - entropy diagram 11 1-2 H1 = H2 T 22 H3 = H4 3 , K , 3 3-4 T Temperature 44 17/04/2013 Fu17/04/2013ßzeile Low temperature refrigeration, Thermodynamics & BasicsSpecific entropy 16 sec 8 Joule Thomson Expansion, temperature - enthalpy diagram 1 300 NitrogenT,h - Diagramm, N2 280 300 bar 200 bar 2 260 100 bar 50 bar 240 40 bar 220 3 200 30 bar , K , 180 20 bar 10 bar 160 5 bar 1 bar Temperatur, K Temperatur, 140 120 Temperature 4 100 80 60 40 7000 9000 11000 13000 15000 17000 19000 21000 Specificspezifischeenthalpy Enthalpie,, J/mol J/mol 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 17 TURBINE 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 18 9 Expansion in a turbine 1st law: P = H1 – H2 P = 0 H1 = H2 (JT throttling) P > 0 H2 < H1 T2 < T1 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 19 Expansion in a turbine 1 300 NitrogenT,h - Diagramm, N2 280 300 bar 200 bar 260 100 bar 50 bar 240 40 bar 220 3 200 30 bar 20 bar , K , 180 10 bar 160 5 bar 2 1 bar Temperatur, K Temperatur, 140 120 Temperature 4 100 80 60 40 7000 9000 11000 13000 15000 17000 19000 21000 Specificspezifischeenthalpy Enthalpie,, J/mol J/mol 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 20 10 Expansion in a turbine, T,s-Diagramm 1 1 1-2 T D 3 3 , K , 3-4 T D 2 2 Temperature 4 1 4 p in Pideal M R Tin 1 1 pout Specific entropy 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 21 REFRIGERATION PROCESSES • Joule-Thomson - process / refrigerator • Brayton - process / refrigerator • Claude - process / refrigerator 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 22 11 Joule Heat exchanger Components: Hardware Main - Thomson process Thomson 17/04/2013 17/04/2013 Throttle valve Low temperature refrigeration, Thermodynamics & Basics & Thermodynamics refrigeration, Low temperature Basics & Thermodynamics refrigeration, Low temperature Heat exchanger Multi stage compressor Q o = H = 5 – H 1 23 24 12 Main Hardware Components: Heat Exchanger (Alu Plate Fin Heat Exchanger) Dimensions per core: up to 1.5 x 1.5 x 8.0 m Standard design temperature: -269 to +65°C (150°F) Design pressures: up to 115 bar (1640 psig) 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 25 Main Elements – Heat Exchanger Modular design allows scale up to any size 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 26 13 Main Hardware Components: Spiral Wound Heat Exchanger 17/04/2013 Fu17/04/2013ßzeile Low temperature refrigeration, Thermodynamics & Basics 27 JT - process: cool - down procedure 1 amb P 5 1 5 2b 3a 2c 3b 2 4 3 2d Heat , K , o 3c Cooling 2 object Temperature 3d 4 3 17/04/2013 Fu17/04/2013ßzeile Low temperature refrigeration, ThermodynamicsSpecific & Basics entropy 28 14 Liquefier / Refrigerator 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 29 JT- refrigerator Advantages: • Simple amb P • No moving parts in cold box reliable 1 • Produce liquid 5 Disadvantages: • High pressure compressor (100-200 bar) • Oil-free compressor [or with oil removal unit] • Relative high cost 2 4 • Relative high maintenance • Low efficiency 3 • Small-scale systems only Heat o • Cooling Temperatures above 70 K only, (theoretically above 50 K only) Cooling object 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 30 15 Open cycle JT- cooler (MMR Technologies) 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 31 Mixed gas JT-cooler based on an oil-lubricated compressor 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 32 16 Brayton-process Qo = Ptur + H5 – H1 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 33 Brayton-Verfahren 1. Cooling capacity Qo depends on - enthalpy difference at the warm end of heat exchanger (JT effect) - and expander [turbine] power: Qo = (H5 - H1) + Ptur 2. Working pressures used in a Brayton cycle are < 20 bar. The enthalpy difference (H5-H1) is therefore relative small: (H5 - H1) 0 3. Therefore the cooling capacity of the Brayton cycle is defined by the power of expander [turbine]: Qo ≈ Ptur 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 34 17 Brayton, T,s – Diagram, Nitrogen 11 5 , K , 2 Temperature 4 3 17/04/2013 Fu17/04/2013ßzeile Low temperature refrigeration, ThermodynamicsSpecific & Basics entropy 35 T,s-Diagram, Helium 10 bar 1 bar 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 36 18 T,s – Diagram, Helium 10 bar 2 4 1 bar 3 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 37 Brayton- refrigerator Advantages: • High efficiency • Pressure relative low • Low cooling temperature Disadvantages: • Cooling temperature To = var • Liquid production: very limited • Turbine • Oilfree compressor or with oil removal unit or turbocompressor • Small cooling capacity (< 500 W) difficult to realize 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 38 19 Brayton- Cooler 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 39 Claude - process Features: • Combination of an expander (turbine or piston expander) and JT valve (throttle) • intermediate pressure level (< 60 bar for nitrogen < 20 bar for helium) • gas at the outlet of expander • liquid at the outlet of JT valve 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 40 20 N2- Claude- Process, T-s-diagram 1 5 5a 2a 4a 2 3a 3 4 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 41 Claude- process Advantages . High efficiency . Compressor pressures relative low . Liquefaction possible . Therefore stable cooling temperature . Low cooling temperatures Disadvantages . Turbine . Oil-free compressor [or with oil removal unit] . Small cooling capacity difficult to realize 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 42 21 Overview, refrigerators 17/04/2013 Low temperature refrigeration, Thermodynamics & Basics 43 Helium Refrigeration • Main applications • Helium – Claude cycles • Helium Liquefier, PFD •

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    30 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us