Quantum Field Theory: Lecture Notes

Quantum Field Theory: Lecture Notes

Quantum field theory: Lecture Notes Rodolfo Alexander Diaz Sanchez Universidad Nacional de Colombia Departamento de F´ısica Bogot´a, Colombia August 23, 2015 Contents 1 Relativistic quantum mechanics 7 1.1 Surveyonquantummechanics . .............. 7 1.1.1 Vector subspaces generated by eigenvalues . ................... 8 1.2 Symmetriesinquantummechanics . ................ 9 1.3 Irreducible inequivalent representations of groups . .......................... 12 1.4 ConnectedLiegroups .............................. ............. 14 1.5 Lorentztransformations . ................ 17 1.6 The inhomogeneous Lorentz Group (or Poincar´egroup) . ...................... 19 1.6.1 Four-vectorsandtensors. .............. 20 1.7 SomesubgroupsofthePoincar´egroup . .................. 22 1.7.1 Proper orthochronous Lorentz group . ................ 23 1.7.2 Discrete transformations in the Lorentz group . .................... 24 1.7.3 Infinitesimal transformations within the proper orthochronus Lorentz group . 25 1.8 QuantumLorentzTransformations . ................. 25 1.8.1 Four-vector and tensor operators . ................ 26 1.8.2 Infinitesimal quantum Lorentz transformations . .................... 27 1.8.3 Lorentz transformations of the generators . ................... 28 1.8.4 Lie algebra of the Poincar´egenerators . .................. 29 1.8.5 Physical interpretation of Poincare’s generators . ....................... 30 1.9 One-particlestates .............................. ............... 32 1.9.1 One-particle states under pure translations . .................... 32 1.9.2 One-particle states under homogeneous Lorentz transformations ............... 32 1.9.3 Physicallittlegroups. .............. 35 1.9.4 Normalization of one-particle states . .................. 36 1.10 One-particle states with non-null mass . ..................... 38 1.10.1 Wigner rotation and standard boost . ................ 40 1.11 One-particle states with null mass . ................... 44 1.11.1 Determination of the little group . ................. 44 1.11.2 Lie algebra of the little group ISO (2) .............................. 48 1.11.3 Massless states in terms of eigenvalues of the generators of ISO (2).............. 50 1.11.4 Lorentz transformations of massless states . ..................... 51 1.12 Space inversion and time-reversal . .................... 53 1.13 Parity and time-reversal for one-particle states with M > 0....................... 56 1.13.1 Parity for M > 0.......................................... 56 1.13.2 Time reversal for M > 0...................................... 58 1.13.3 Parity for null mass particles . ................ 59 1.13.4 Time-reversal for null mass particles . ................... 62 1.14 Action of T 2 andKramer’sdegeneracy. 63 2 CONTENTS 3 2 Scattering theory 65 2.1 Construction of “in” and “out” states . .................. 65 2.2 The S matrix ............................................. 70 − 2.3 Symmetries of the S matrix ....................................... 75 − 2.3.1 Lorentzinvariance . .. .. .. .. .. .. .. .. ............ 75 2.3.2 Internalsymmetries . .. .. .. .. .. .. .. .. ............ 81 2.3.3 Parity ........................................ ........ 83 2.3.4 Time-reversal................................. ........... 86 2.3.5 PTsymmetry.................................... ........ 89 2.3.6 Charge-conjugationC,CPandCPT . ............. 90 2.4 Ratesandcross-sections . ................ 91 2.4.1 One-particle initial states . ................ 94 2.4.2 Two-particles initial states . ................. 95 2.4.3 Multi-particle initial states . ................. 95 2.4.4 Lorentz transformations of rates and cross-sections ....................... 95 2.5 Physical interpretation of the Dirac’s phase space factor δ4 (p p ) dβ ............... 98 β − α 2.5.1 The case of Nβ =2......................................... 98 2.5.2 The case with Nβ =3andDalitzplots.............................. 101 2.6 Perturbationtheory .............................. .............. 102 2.6.1 Distorted-wave Born approximation . ................ 107 2.7 Implicationsofunitarity . ................. 108 2.7.1 Generalized optical theorem and CPT invariance . ................... 111 2.7.2 Unitarity condition and Boltzmann H-theorem . .................. 112 3 The cluster decomposition principle 115 3.1 Physicalstates .................................. ............. 115 3.1.1 Interchange of identical particles . .................. 116 3.1.2 Interchange of non-identical particles . .................... 117 3.1.3 Normalization of multi-particle states . ................... 117 3.2 Creation and annihilation operators . ................... 118 3.2.1 Commutation and anti-commutation relations of a (q) and a† (q) ............... 119 3.3 Arbitrary operators in terms of creation and annihilationoperators ................. 120 3.4 Transformation properties of the creation and annihilation operators . 121 3.5 Cluster decomposition principle and connected amplitudes....................... 122 3.5.1 Someexamplesofpartitions. .............. 124 3.6 Structureoftheinteraction . ................. 127 3.6.1 Asimpleexample ................................ ......... 129 3.6.2 Connected and disconnected parts of the interaction . ..................... 131 3.6.3 Some examples of the diagrammatic properties . .................. 133 3.6.4 Implications of the theorem . .............. 136 4 Relativistic quantum field theory 137 4.1 Freefields....................................... ........... 137 4.2 Lorentz transformations for massive fields . ..................... 139 4.2.1 Translations.................................. ........... 142 4.2.2 Boosts........................................ ........ 144 4.2.3 Rotations ..................................... ......... 144 4.3 Implementation of the cluster decomposition principle ......................... 145 4.4 Lorentz invariance of the S matrix.................................... 146 − 4 CONTENTS 4.5 Internal symmetries and antiparticles . ..................... 147 4.6 Lorentz irreducible fields and Klein-Gordon equation . ........................ 149 5 Causal scalar fields for massive particles 151 5.1 Scalar fields without internal symmetries . ..................... 151 5.2 Scalar fields with internal symmetries . ................... 155 5.3 Scalar fields and discrete symmetries . ................... 158 6 Causal vector fields for massive particles 162 6.1 Vector fields without internal symmetries . .................... 162 6.2 Spinzerovectorfields ............................. .............. 165 6.3 Spinonevectorfields.............................. .............. 166 6.4 Spin one vector fields with internal symmetries . ..................... 174 6.4.1 Field equations for spin one particles . .................. 175 6.5 Inversion symmetries for spin-one fields . .................... 176 7 Causal Dirac fields for massive particles 178 7.1 Spinor representations of the Lorentz group . ..................... 178 7.2 Some additional properties of the Dirac matrices . ...................... 182 7.3 The chiral representation for the Dirac matrices . ....................... 185 7.4 CausalDiracfields ................................ ............. 190 7.5 Dirac coefficients and parity conservation . .................... 193 7.6 Charge-conjugation properties of Dirac fields . ...................... 201 7.7 Time-reversal properties of Dirac fields . ..................... 204 7.8 Majoranafermionsandfields . ............... 207 7.9 Scalar interaction densities from Dirac fields . ....................... 207 7.10TheCPTtheorem .................................. ........... 209 8 Massless particle fields 211 9 The Feynman rules 223 9.1 Generalframework ................................ ............. 223 9.2 Rules for the calculation of the S matrix ................................ 226 − 9.3 Diagrammatic rules for the S matrix .................................. 227 − 9.4 Calculation of the S matrixfromthefactorsanddiagrams . 229 − 9.5 Afermion-bosontheory . .. .. .. .. .. .. .. .. .............. 234 9.5.1 Fermion-boson scattering . .............. 234 9.5.2 Fermion fermion scattering . .............. 238 9.5.3 Boson-bosonscattering . ............. 238 9.6 Aboson-bosontheory .............................. ............. 238 9.7 Calculation of the propagator . ................. 240 9.7.1 Other definitions of the propagator . ................ 248 9.8 Feynman rules as integrations over momenta . ................... 249 9.9 Examples of application for the Feynman rules with integration over four-momenta variables . 252 9.9.1 Fermion-boson scattering . .............. 252 9.9.2 Fermion-fermion scattering . ............... 255 9.9.3 Boson-bosonscattering . ............. 255 9.10 Examples of Feynman rules as integrations over momenta ....................... 258 9.10.1 Fermion-boson scattering . ............... 259 9.10.2 Fermion-fermion and Boson-boson scattering . .................... 260 CONTENTS 5 9.11 Topological structure of the lines . .................... 260 9.12 Off-shell and on-shell four-momenta . .................. 262 9.12.1 The r thderivativetheorem ................................ 264 − 10 Canonical quantization 268 10.1 Canonicalvariables. ................ 268 10.1.1 Canonical variables for scalar fields . ................... 269 10.1.2 Canonical variables for vector fields . .................. 271 10.1.3 Canonical variables for Dirac fields . .................. 274 10.2 Functional derivatives for canonical variables . ......................... 275 10.3 FreeHamiltonians ..............................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    374 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us