Compound Semiconductor Materials and Processing Technologies for Photonic Devices and Photonics Integration

Compound Semiconductor Materials and Processing Technologies for Photonic Devices and Photonics Integration

Carl kth royal institute r of technology euterskiöld Hedlund euterskiöld Compound semiconductor materials and processing technologies for photonic devices and photonics integration photonics and devices photonic for technologies processing and materials semiconductor Compound Doctoral Thesis in Information and Communication Technology Compound semiconductor materials and processing technologies for photonic devices and photonics integration CARL REUTERSKIÖLD HEDLUND ISBN 978-91-7873-665-2 TRITA-EECS-AVL-2020:51 KTH2020 www.kth.se Stockholm, Sweden 2020 Compound semiconductor materials and processing technologies for photonic devices and photonics integration CARL REUTERSKIÖLD HEDLUND Academic Dissertation which, with due permission of the KTH Royal Institute of Technology, is submitted for public defence for the Degree of Doctor of Philosophy on Friday the 30h October 2020, at 10:00 a.m. in sal C, Electrum, KTH Doctoral Thesis in Information and Communication Technology KTH Royal Institute of Technology Stockholm, Sweden 2020 © Carl Reuterskiöld Hedlund ISBN 978-91-7873-665-2 TRITA-EECS-AVL-2020:51 Printed by: Universitetsservice US-AB, Sweden 2020 Contents Abstract …………………………………………………………6 Sammanfattning ……………………………………………….8 Acknowledgements ………………………………………….10 List of Publications ………………………………………….11 1 Introduction ……………………………………………….17 1.1 Part A: GaAs and InP- device growth and processing…...17 1.1.1 Transistor vertical surface emitting lasers …………………..17 1.1.2 Trench confined transistors for spatial light modulator driver electronics…………………………………....………….20 1.2 Part B: Quantum dot devices …………………………………22 1.2.1 Quantum dot photodetectors for long-wavelength infrared detectors ………………………………………………22 1.2.2 Single photon emitters for quantum cryptography…………..23 1.3 Part C: Photonic crystal surface-emitting lasers (PCSELs) …………………………………………………25 1.3.1 Photonic crystal surface emitting lasers ……………………..26 1.3.2 Discrete photonic crystal surface emitting lasers …………..28 2 Experimental methods ………………………………….30 2.1 MOVPE ……………………………………………………………30 2.2 Fast feedback characterization ………………………………32 4 3 Results and discussion …………………………………34 3.1 Part A: GaAs and InP- device growth and processing …..34 3.1.1 Transistor vertical surface emitting lasers …………………..34 3.1.2 Trench confined transistors for spatial light modulator driver electronics………………………………..………………38 3.2 Part B: Quantum dot devices …………………………………42 3.2.1 Quantum dot photodetectors for long-wavelength infrared detectors ………………………………………………42 3.2.2 Single photon emitters for quantum cryptography ………….45 3.3 Part C: Photonic crystal surface-emitting lasers (PCSELs) …………………………………………………………49 3.3.1 Photonic crystal surface emitting lasers……………………...49 3.3.2 Discrete photonic crystal surface emitting lasers …….…….52 4 Summary, conclusions and outlook ………………….59 5 References ………………………………………………...62 6 Appendix …………………………………………………..77 7 Guide to papers ………………………………………..…95 8 Appended papers ……………………………………..…99 5 Abstract The advancement of semiconductor optoelectronics relies extensively on materials and processing technologies of ever-increasing sophistication, such as nanometer-range lithography, epitaxial growth methods with monatomic layer control, and anisotropic etching procedures that allows for the precise sculpturing of device features even in the limit of extreme aspect ratios. However, upcoming application needs puts requirements on optimized designs or device performances, e.g. in terms of integration density, power efficiency, modulation bandwidth or spectral response, which call for innovative and refined methodologies. In the present thesis, we investigate a few different device designs or processing schemes that aims for extended performances or manufacturability as compared to presently available technologies. In specific, we study the design and fabrication of transistor-vertical-cavity surface-emitting lasers (T-VCSELs), the regrowth of InP-based driver electronics in the trenches of arrayed spatial light modulators (SLMs), the epitaxial growth and analysis of quantum dot (QD)-based interband photodetectors, the realization of InGaAs/GaAs QD-based single-photon emitters for the 1.55-μm waveband, as well as the fabrication of discrete and silicon-integrated photonic-crystal surface-emitting lasers (PCSELs). The transistor laser, invented at the University of Illinois around 2006, has received considerable interest due to potential major advantages in modulation bandwidth, noise properties and novel functionality as compared to conventional diode lasers. Here we study the design and fabrication of pnp-type 980-nm AlGaAs/InGaAs/GaAs T- VCSELs. Using an epitaxial regrowth process, an intracavity contacting scheme, and an optimized layer design, continuous-wave (CW) result in terms of threshold, output power and temperature performance comparable to conventional VCSELs could be demonstrated. In addition, the collector-current breakdown mechanism was shown to be due to a band-filling effect rather than an intracavity photon absorption process as previously suggested. A subsequent study regards the epitaxial regrowth for the integration of driver electronics with two-dimensional arrays of spatial light modulators (SLMs). The challenge here relies in controlling the regrowth morphology in the restricted areas that limit the SLM array fill factor. It is shown that the orientation of the SLM array with respect to the crystallographic directions is critical for controlling the regrowth 6 morphology, with mesa alignments along the <001> directions preferable over the <011> directions. Following this scheme, an optimized etch/regrowth process for top-contacted field-effect transistors is demonstrated. Next, we discuss the development of long-wavelength infrared (LWIR; 8-12 μm) detector elements for thermal imaging. Such detectors have traditionally been realized in the mercury-cadmium-telluride system (MCT; high performance but difficult materials properties resulting in high cost) or using AlGaAs/GaAs quantum-well infrared photodetectors (QWIPs; excellent manufacturing properties but compromised performance figures). In this work we consider interband QD photodetectors based on spatially indirect transitions in the In(Ga)Sb QD/InAs type-II system to combine the respective advantages of MCT detectors and QWIPs. An epitaxial growth process is optimized for photo- response in the LWIR regime, and the QD properties were also studied using excitation power-dependent PL and spatially resolved current- voltage spectroscopy using a scanning-tunneling microscope. Quantum dot-based structures were also studied for the development of single-photon telecommunication-wavelength emitters. In this case, InAs QDs were formed in an In-rich InGaAs metamorphic buffer layer grown on GaAs substrate. This resulted in narrow and bright micro-photoluminescence emission lines from isolated QDs around 1.55 μm at low temperature, thereby making the application of such QDs an interesting alternative approach to InAs/InP QDs for the realization of single-photon emitters for telecommunication-wavelength fiber-based quantum networks. Finally, we describe the development of silicon-integrated and discrete photonic-crystal surface-emitting lasers (PCSELs). In the former case, a transfer-print process is used to combine an SOI-based PC structure with an InP-based active region. This results in an ultra-shallow device structure and a buried tunnel-junction configuration is used for current injection. In the latter case, the metal-organic vapor-phase epitaxy (MOVPE) growth conditions are tuned to form perfectly encapsulated cavities in the InP matrix. Low-threshold lasing is thereby obtained from optical pumping. 7 Sammanfattning Framstegen inom halvledarbaserad optoelektronik baseras i stor utsträckning på alltmer förfinad material och processteknologi, såsom litografi i nanometerskala, epitaxiala tillväxtmetoder med atomär skiktkontroll och starkt anisotropisk etsning av avancerade komponentstrukturer. Uppkommande applikationsbehov ställer emellertid allt större krav på optimerad design och komponentprestanda, t.ex. avseende integrationstäthet, energieffektivitet, modulationsbandbredd eller spektral respons, vilket kräver innovativa och förfinade metoder. I denna avhandling undersöks några olika komponentdesigner och tillverkningsmetoder som syftar till utökad prestanda och/eller tillverkningsförmåga jämfört med nu tillgänglig teknologi. Speciellt studeras design och tillverkning av transistor- vertikalkavitetslasrar (T-VCSELs), epitaxiell återodling av InP-baserad drivelektronik i pixelerade ljusmodulatorer (SLM), epitaxiell tillväxt och analys av kvantpricks (QD)-baserade interband-fotodetektorer, realisering av InGaAs/GaAs QD-baserade single-fotonsändare för telekommunikationsområdet, samt tillverkning av diskreta och kiselintegrerade fotonisk-kristall-baserade ytemitterande lasrar ( PCSEL). Transistorlasern, som uppfanns vid University of Illinois omkring 2006, har rönt stort intresse på grund av möjliga prestandafördelar relaterat till moduleringsbandbredd, brusegenskaper och ny funktionalitet jämfört med konventionella diodlasrar. Här studeras design och tillverkning av pnp-typ 980-nm AlGaAs/InGaAs/GaAs T- VCSEL. Med hjälp av en epitaxiell återodlingsprocess, intrakavitetskontakter och optimerad design, demonstreras T-VCSELs med continuous wave (CW)-resultat i termer av tröskel, uteffekt och temperaturprestanda jämförbara med konventionella VCSELs. Dessutom visas genombrottsmekanismen för kollektorström

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    99 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us