The Messenger and the Regulator DISSERTATION Submitted in Partial

The Messenger and the Regulator DISSERTATION Submitted in Partial

UNIVERSITY OF CALIFORNIA, IRVINE Computational Biology of RNA: The Messenger and The Regulator DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Elmira Forouzmand Dissertation Committee: Professor Xiaohui Xie, Chair Professor Michael Dillencourt Professor Yongsheng Shi 2019 © 2019 Elmira Forouzmand DEDICATION To MAMAN BABA SIAVASH ALI SAMIRA ii TABLE OF CONTENTS List of Figures ............................................................................................................................................................. v List of Tables ..............................................................................................................................................................vi Acknowledgements ................................................................................................................................................ vii Curriculum Vitae ........................................................................................................................................................ x Publications ...............................................................................................................................................................xi Abstract of the Dissertation .................................................................................................................................. xii Chapter 1 : Introduction ............................................................................................................................................. 1 Chapter 2 : Bioinformatics for Next Generation Sequencing .................................................................................. 8 Background .............................................................................................................................................................. 8 Bioinformatics in application ................................................................................................................................ 16 Chapter 3 : Developmentally regulated long non-coding RNAs in Xenopus tropicalis ....................................... 20 Introduction ........................................................................................................................................................... 20 Data ......................................................................................................................................................................... 23 Method .................................................................................................................................................................... 23 Gaussian Processes ............................................................................................................................................ 24 Detection Pipeline .............................................................................................................................................. 28 Weak lncRNA candidates’ detection approach .............................................................................................. 32 Expression Dynamics......................................................................................................................................... 36 Gene-LnRNAs Correlations ............................................................................................................................. 39 cell-type specific expression .............................................................................................................................. 41 Conclusion .............................................................................................................................................................. 41 Chapter 4 : Exon Size and Sequence Conservation for Identification of Splice Altering Nucleotides ............... 43 Introduction ........................................................................................................................................................... 43 Method and Results ............................................................................................................................................... 45 Exon Matching ................................................................................................................................................... 45 Splice Altering Mutations ................................................................................................................................. 50 Conclusion .............................................................................................................................................................. 55 Chapter 5 : PASARNA: A Tool for polyadenylation analysis using RNA-Seq Data ........................................... 56 Introduction ........................................................................................................................................................... 56 Background ............................................................................................................................................................ 61 Method .................................................................................................................................................................... 62 RNA-Seq vs PAS-Seq ........................................................................................................................................ 62 Module 1. Pre-Processor ................................................................................................................................... 64 Module 2. Candidate identifier with Change Point Detection Techniques ................................................... 67 Module 3. Basic Filter........................................................................................................................................ 75 Module 4. Sequence Model with Convolutional Neural Network ................................................................. 76 Module 5. Quantifier. ........................................................................................................................................ 79 iii Data ......................................................................................................................................................................... 80 Implementation ...................................................................................................................................................... 81 Results ..................................................................................................................................................................... 81 Future work............................................................................................................................................................ 84 Chapter 6 : Cells that record their own history ...................................................................................................... 86 Introduction ........................................................................................................................................................... 86 Framework and Methods ...................................................................................................................................... 87 CHRYON technology ........................................................................................................................................ 87 Lineage Tracing ................................................................................................................................................. 88 Bulk Experiment ................................................................................................................................................ 89 Simulation and Lineage Tracing ...................................................................................................................... 91 Forward process - Simulation ........................................................................................................................... 91 Reverse Process – Reconstruction (Greedy and Probabilistic) ...................................................................... 92 Future work.......................................................................................................................................................... 106 References ................................................................................................................................................................ 108 iv LIST OF FIGURES Figure 2-1 General Schematics of pre-mRNA processing ...................................................................................... 10 Figure 2-2 Typical RNA-Seq Experiment................................................................................................................ 12 Figure 3-1 Time-Scale ............................................................................................................................................... 27 Figure 3-2 Signal to Noise Ratio ............................................................................................................................... 28 Figure 3-3 LncRNA Discovery Pipeline ..................................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    133 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us