Review Test 3: 6 Multiple Choice: Series: Convergence, Divergence, Absolute Convergence, Conditional Convergence, Sum (Geome

Review Test 3: 6 Multiple Choice: Series: Convergence, Divergence, Absolute Convergence, Conditional Convergence, Sum (Geome

Review Test 3: 6 Multiple Choice: Series: Convergence, Divergence, Absolute Convergence, Conditional Convergence, Sum (geometric, telescoping) Free Response: 1. L’Hopital – recognize and apply 2. Improper Integrals – recognize type of improper integral, compute improper integrals using CORRECT notation 3. Series – use known tests (alternating series, root, ratio, p-series, limit comparison, integral, basic comparison, geometric, basic divergence) to determine convergence 4. Taylor Polynomials and Series – Give Taylor polynomials using given information (values, functions, etc); be able to find the error; radius and interval of convergence Find a Taylor series for cos (x2) centered at x = 0: Find a Taylor series for e2x centered at x = 0: 2 Find the Taylor polynomial P5(x) for f (x) = xcosx . –x Find the nth Taylor polynomial Pn for the function f (x) = e Find the nth Taylor polynomial Pn for the function f (x) = sinh x Find the nth Taylor polynomial Pn for the function f (x) = ln (1 – x) Give the 5th degree Taylor polynomial for f (x) = sin(x) centered at 0. Give the 5th degree Taylor polynomial for f (x) = ex centered at 0. Give the 5th degree Taylor polynomial for f (x) = ln(x+1) centered at 0. Give the 5th degree Taylor polynomial for f (x) = cos(x) centered at 0. f,f',f''(212221) =−( ) =( ) =− Give the 2nd degree Taylor polynomial for f centered at 2. Rewrite f (x) = 3x3 +2x2 – x + 1 in powers of (x – 2). Create the 3rd degree Taylor Polynomial for f (x) = arctan(x) centered at x = 0. f n1+ c ( ) n1+ Rxn ( ) = x (n1+ )! Use the Lagrange formula to find the smallest value of n so that the Taylor polynomial of degree n for f (x) = cos (x) centered at x = 0 can be used to approximate f (x) within 10 –4 at x = 1. Use the Lagrange formula to find the smallest value of n so that the nth degree Taylor Polynomial for f (x) = ln (1 + x) centered at x = 0 approximates ln (2) with an error of no more than 0.01. n1+ ∞ −1 Which term is truncated if we want to approximate the sum of ( ) ∑ 3 n1= 2n− 1 1 with an error of less than ? 1000 1. State the indeterminate form and compute the following limits : ln( n4+ ) a. lim n→∞ n2+ 2 b. lim 3n n n→∞ ( ) 2n ⎛⎞3 c. lim⎜⎟1 + n→∞ ⎝⎠n x2x− sin( ) d. lim x0→ x2x+ sin( ) 2 e1x − e. lim x0→ 2x2 x ⎛⎞1 f. lim + ⎜⎟ x0→ ⎝⎠x 3ex3/ −( 3+ x ) g. lim x0→ x 2 x 2 h. lim x→∞ lnx 1xe+−x i. lim x0→ xe( x − 1) arctan( 4x ) j. lim x0→ x ∞ 1 2. Give the exact value of . ∑ n n=0 2 ∞ 1 3. Give the exact value of ∑ . n=2 nn( +1) ∞ cos πn 4. Give the exact value of ( ). ∑ n n=2 3 5. Evaluate each improper integral, and explain why it is improper. Use correct notation. 2 1 a. dx ∫−1 x 2 1 1 b. dx ∫0 6 1x− 7 14 c. dx ∫5 2 ( x6− ) 27 d. xdx−23/ ∫ 0 4 1 dx e. ∫ 0 4x− ∞ 1 f. dx = ∫0 1x+ 2 5 dx g. = ∫2 x2− Notes for series “growth”: Let p(k) be a polynomial in k. rk for r > 1 grows much faster than p(k) k! grows much faster than rk, p(k) kk grows much faster than the others Hence, pk( ) pk( ) pk( ) ,, ∑∑∑rkkkk ! rrkkk! ,, ∑∑∑k ! kkkk ALL converge rapidly. Determine if the following series converge absolutely, converge conditionally, or diverge? n+1 ∞ −1 n a. ( ) ∑ n=1 n + 3 ∞ cosπ n b. 2 ∑ n=1 n n ∞ 4n( − 1) c. ∑ 2 n0= 3n++ 2n 1 n ∞ 31− d. ( ) ∑ 2 n0= 3n++ 2n 1 n ∞ 3n− 1 e. ( ) ∑ 2 n0= 3n++ 2n 1 n ∞ ⎛⎞n ⎛⎞n f. ∑⎜⎟41( − ) ⎜⎟ n0⎜⎟n3+ = ⎝⎠⎝⎠ n ∞ ⎛⎞21( − ) arctan n g. ⎜⎟ ∑ 23 n0= ⎜⎟3n++ n ⎝⎠ n n ∞ ⎛⎞( −13) h. ⎜⎟ ∑ n n0= ⎜⎟43n+ ⎝⎠ n ∞ ⎛⎞( −13) i. ∑⎜⎟ n0= ⎜⎟n2++ln n2 ⎝⎠( ) ( ) n ∞ (−1n) ! j. ∑ n2= (n1+ )! n ∞ (−1) k. ∑ n2= 3n+ 2 n ∞ −110n2 l. ( ) ∑ n n2= 3 n ∞ (−13) n m. ∑ n2= n! n ∞ (−1) n. ∑ 2 n2= n3n2++ ∞ cos(πnn) n o. ∑ n2= n! ∞ 1 p. ∑ 2 n2= nn(ln( )) Converge or diverge? Additional review problems. ∞ n3n22 +− a. ∑ 5 n2= 4n+ n− 1 ∞ n3n22 +− b. ∑ 6 n1= 4n+ n− 1 ∞ n5 c. ∑ n n1= 5 ∞ 1 d. ∑ . n=1 nn( +1) ∞ 1 e. ∑ 3 n=1 n ∞ n f. ∑ 3 n=1 nn+ 2 ∞ 2 g. ∑ n n=0 7 n ∞ −1 h. ( ) ∑ 2 n=1 n ∞ ⎛⎞11 i. ∑⎜⎟− n=1⎝⎠nn+1 ∞ 5 j. ∑ n=1 21n − ∞ 32n ∑ k. n=1 n! n ∞ ⎛⎞2n l. ∑⎜⎟ n=1⎝⎠51n − ∞ (1)− n−12n m. ∑ 3 n=1 31n + n ∞ ⎛⎞5 3 − n. ∑ ⎜⎟ n=0 ⎝⎠2 ∞ n ∑ o. n=1 n ∞ 1 p. ∑ −n n=11+ e ∞ 5n ∑ 3 q. n=1 n ∞ ∑cos(πn ) r. n=1 ∞ 1 s. ∑ 2 n2= nn( ln ) ∞ 3 ne− n ∑ t. n1= n ∞ ⎛⎞n u. ∑⎜⎟ n1= ⎝⎠n1+ ∞ 1 v. ∑ 3 n=1 n +1 ∞ n! w. ∑ n n=1 e n ∞ (−1n) ! x. ∑ n n2= n n ∞ (−1n) ! y. ∑ n2= 3n+ 2 n ∞ (−1n) ! z. ∑ n2= nn( + 1)! n ∞ (−−1n1) ( ) aa. ∑ 2 n2= 5n+ 2n− 1 ∞ cos(πn) bb. ∑ n2= n7+ n ∞ −12n cc. ( ) ∑ n n2= 21+ ∞ arctan(n) dd. ∑ 2 n2= 1n+ .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us