Trig Cheat Sheet

Trig Cheat Sheet

Trig Cheat Sheet Formulas and Identities Tangent and Cotangent Identities Half Angle Formulas (alternate form) sinqqcos qq1-cos1 Definition of the Trig Functions tanqq==cot sin=±sin2 qq=-(1cos2( )) Right triangle definition cosqqsin 222 Reciprocal Identities For this definition we assume that Unit circle definition qq1+cos1 p For this definition q is any angle. 11cos=±cos2 qq=+(1cos2( )) 0 <<q or 0°<q <°90 . cscqq==sin 222 2 y sinqqcsc 1-cos2q 11qq1-cos 2 ( ) secqq==cos tan=±=tan q ( xy, ) cosqqsec 21++cosqq1cos2( ) 1 11Sum and Difference Formulas hypotenuse y q cotqq==tan sina±b=±sinacosbcosabsin opposite x tanqqcot ( ) x Pythagorean Identities cos(a±=b) cosacosbmsinabsin q sin22qq+=cos1 tanab±tan adjacent 22 tan (ab±=) tanqq+=1sec 1tanabtan 22 m opposite hypotenuse y 1 1+=cotqqcsc Product to Sum Formulas sinq = cscq = sinq ==y cscq = hypotenuse opposite 1 y Even/Odd Formulas 1 sinasinb=ëûéùcos(a-b) -+cos(ab) adjacent hypotenuse x 1 sin(-q) =-sinqcsc(-qq) =-csc 2 cosq = secq = cosq ==x secq = hypotenuse adjacent 1 x 1 cos(-q) =cosqsec(-=qq) sec cosacosb=ëûéùcos(a-b) ++cos(ab) opposite adjacent y x 2 tanq = cotq = tanq = cotq = tan(-q) =-tanqcot(-qq) =-cot adjacent opposite x y 1 sinacosb=ëûéùsin(a+b) +-sin(ab) Periodic Formulas 2 Facts and Properties If n is an integer. 1 cosasinb=ëûéùsin(a+b) --sin(ab) Domain sin(q+2pnn) =sinqcsc(q+=2pq) csc 2 The domain is all the values of q that Period Sum to Product Formulas cos(q+2pnn) =cosqsec(q+=2pq) sec can be plugged into the function. The period of a function is the number, æa+-böæöab tanq+pnn=tanqcotq+=pqcot sinab+=sin2sinç÷cosç÷ T, such that f(qq+=Tf) ( ) . So, if w ( ) ( ) è22øèø sinq , q can be any angle Double Angle Formulas is a fixed number and q is any angle we æa+-böæöab cosq , q can be any angle have the following periods. sinab-=sin2cosç÷sin ç÷ sin(2q) =2sinqqcos è22øèø æö1 tanq , qp¹ç÷nn+,=0,±±1,2,K 22 èø2 2p cos(2q) =-cosqqsin æa+-böæöab sin(wq) ® T = cosab+=cos2cosç÷cosç÷ 2 22 cscq , qp¹nn,=0,±±1,2,K w =-2cos1q èøèø æö1 2p 2 æa+-böæöab secq , qp¹ç÷nn+,=0,±±1,2,K cos (wq) ® T = =-12sin q cosab-cos=-2sinç÷sinç÷ èø2 w è22øèø 2tanq qp¹nn,=0,±±1,2, p tan2q= Cofunction Formulas cotq , K tan (wq) ® T = ( ) 2 w 1-tan q æppöæö Range 2p Degrees to Radians Formulas sinç-q÷=cosqcosç÷-=qqsin csc(wq) ® T = è22øèø The range is all possible values to get w If x is an angle in degrees and t is an æppöæö out of the function. 2p angle in radians then cscç-q÷=secqsecç÷-=qqcsc sec(wq) ® T = è22øèø -1££sin1q cscqq³1andcsc1£- w pptxt180 =Þtx==and æppöæö -1££cos1q secqq³1andsec1£- p 180x180 p tanç-q÷=cotqcotç÷-=qqtan cot (wq) ® T = è22øèø -¥<tanq <¥ -¥<cotq <¥ w © 2005 Paul Dawkins © 2005 Paul Dawkins Unit Circle Inverse Trig Functions Definition Inverse Properties y -1 --11 (0,1) y==sinx is equivalent to xysin cos(cos( xx)) ==cos(cos(qq)) -1 p æö13 --11 ç÷, y==cosx is equivalent to xycos sinsinxx==sinsin qq æö13 ç÷22 ( ()) ( ()) ç÷-, 2 èø -1 èø22 y==tanx is equivalent to xytan --11 p æö22 tan(tan()xx)==tan(tan ()qq) 2p 90° ç÷, æö22 3 ç÷22 ç÷- , èø 22 3 p Domain and Range èø 120° 60° Alternate Notation 3p æö31 Function Domain Range 4 ç÷, -1 ç÷22 pp sinxx= arcsin æö31 4 èø yx=sin-1 -11££x -££y ç÷- , 135° 45° p -1 èø22 5p 22 cosxx= arccos 6 -1 6 30° yx=cos -11££x 0 ££y p tan-1 xx= arctan 150° pp yx=tan -1 -¥<x <¥ -<<y 22 (-1,0) p 180° 0° 0 (1,0) Law of Sines, Cosines and Tangents 360° 2p x c b a 210° 7p 330° 11p 6 225° 6 æö31 æö31 a g ç÷--, 315° ç÷,- èø22 5p èø22 240° 300° 7p 4 270° æö22 4p b ç÷--, 5p 4 æö22 èø22 ç÷,- 3 3p 22 3 èø Law of Sines Law of Tangents æö13 2 --, æö13 1 ç÷ ç÷,- sinasinbgsin ab- tan 2 (ab-) èø22 èø22 == = abc 1 (0,1- ) ab++tan 2 (ab) Law of Cosines 1 bc-tan 2 (bg-) 222 = a=b+-c2bc cosa 1 bc++tan 2 (bg) 222 For any ordered pair on the unit circle ( xy, ) : cosq = x and sinq = y b=a+-c2ac cos b 1 ac-tan 2 (ag-) 222 = c=a+-b2ab cosg ac++tan 1 (ag) Example 2 Mollweide’s Formula æ5ppö1æö53 1 cosç÷=sinç÷=- ab+ cos 2 (ab-) è3ø2èø32 = c sin 1 g 2 © 2005 Paul Dawkins © 2005 Paul Dawkins .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us