The Gamma Function

The Gamma Function

The Gamma Function EMILY GULLERUD, michael vaughan University of Wisconsin - Eau Claire May 10, 2017 EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 1 / 15 What is the Gamma Function? Motivation The gamma function (Γ) is an extension of the factorial function to − C n Z [ 0. It is a solution to the interpolation problem of connecting the discrete points of the factorial function. EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 2 / 15 What is the Gamma Function? Definitions Factorial function definition + If n 2 Z , then Γ(n) = (n − 1)! Improper integral definition R 1 z−1 −x If z 2 fx + iy j x > 0g, then Γ(z) = 0 x e dx. Analytic continuation is required to extend the integral definition to − z 2 fx + iy j y 6= 0 when x 2 Z [ 0g. This function has simple poles at all the non-positive integers. EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 3 / 15 What is the Gamma Function? More Definitions Definition as an infinite product 1 1 z 1 Y 1 + Γ(z) = n z 1 + z n=1 n Weierstrass's definition 1 e−γz Y z −1 Γ(z) = 1 + ez=n z n n=1 EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 4 / 15 Properties Identities and Formulas Requirements for Γ to be an extension of the factorial function: Γ(1) = 1 zΓ(z) = Γ(z + 1) for Re(z) > 0 Property of conjugation: Γ(z) = Γ(z) Complement Formula: π Γ(z)Γ(1 − z) = for z 2= sin(πz) Z Duplication Formula: 1 1−2z p Γ(z)Γ(z + 2 ) = Γ(2z) · 2 π EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 5 / 15 Properties Proof of zΓ(z) = Γ(z + 1) Let α 2 C such that Re(α) > 0 Z 1 Γ(α) = xα−1e−x dx 0 1 Z 1 α−1 −x −x α−2 = x (−e ) − −e (α − 1)x dx 0 0 α−1 Z 1 x −x α−2 = − lim x + e (α − 1)x dx x!1 e 0 Z 1 = 0 + (α − 1) e−x xα−1−1dx 0 Γ(α) = (α − 1)Γ(α − 1) Take z = α − 1. Γ(z + 1) = zΓ(z) EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 6 / 15 Properties Values of the Gamma Function 3 4p Γ − = π 2 3 1 p Γ − = −2 π 2 Γ(1) = 1 1 p Γ(2) = 1 Γ = π 2 Γ(3) = 2 3 1p Γ = π Γ(4) = 6 2 2 Γ(5) = 24 5 3p Γ = π 2 4 7 15p Γ = π 2 8 EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 7 / 15 Properties p 1 π Example: Proving 2 ! = 2 1 3 ! = Γ 2 2 1 1 = Γ 2 2 1=2 Z 1 Let u = t 1 −1=2 −t 1 −1=2 = t e dt Then du = 2 t dt 2 0 1 Z 2 = e−u p0 π = 2 EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 8 / 15 Applications and Connections to Other Functions The log-gamma function The Gamma function grows rapidly, so taking the natural logarithm yields a function which grows much more slowly: ln Γ(z) = ln Γ(z + 1) − ln z This function is used in many computing environments and in the context of wave propogation. EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 9 / 15 Applications and Connections to Other Functions Derivative of the log-gamma function: Digamma function The Digamma function is defined to be the logarithmic derivative of the Gamma function: d Γ0 (z) (z) = ln (Γ(z)) = dz Γ(z) A general form of the Digamma function: the Polygamma function defined to be the (m + 1)th logarithmic derivative of the Gamma function: dm (m)(z) = ln (Γ(z)) dzm Notice that (0)(z) = (z) The Polygamma function is meromorphic on C (holomorphic on − C n Z [ 0 The nonpositive integers have poles of order m + 1 EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 10 / 15 Applications and Connections to Other Functions Digamma and Polygamma functions EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 11 / 15 Applications and Connections to Other Functions Digamma and Polygamma functions Finding a property of the Digamma function: Recall that Γ(z + 1) = zΓ(z) Take the derivative: 0 0 Γ (z + 1) = zΓ (z) + Γ(z) Divide by Γ(z + 1) = zΓ(z): Γ0 (z + 1) Γ0 (z) 1 = + Γ(z + 1) Γ(z) z Substitute in function: 1 (z + 1) = (z) + z EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 12 / 15 Applications and Connections to Other Functions Incomplete Gamma Functions upper incomplete gamma function R 1 s−1 −t Γ(s; x) = x x e dt lower incomplete gamma function R x s−1 −t γ(s; x) = 0 x e dt EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 13 / 15 Applications and Connections to Other Functions Pi and Beta Functions Definition of the Beta Function R 1 x−1 y−1 B(x; y) = 0 t (1 − t) dt for Re(x); Re(y) > 0 Beta function in terms of the Gamma function: Γ(x)Γ(y) B(x; y) = Γ(x + y) Definition of the Pi Function Π(z) = Γ(z + 1) = zΓ(z) EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 14 / 15 Applications and Connections to Other Functions Riemann Zeta Function The functional equation: πs ζ(s) = 2s πs−1 sin Γ(1 − s)ζ(1 − s) 2 The functional equation in another form: − s s − 1−s 1 − s π 2 Γ ζ(s) = π 2 Γ ζ(1 − s) 2 2 Another relation: Z 1 uz−1 ζ(z)Γ(z) = u du for Re(z) > 1 0 e − 1 EMILY GULLERUD, michael vaughan The Gamma Function May 10, 2017 15 / 15.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us