
DEGREE PROJECT IN STRUCTURAL ENGINEERING AND BRIDGES, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Optimization of geometric road design for autonomous vehicle Prabin Aryal KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ARCHITECTURE AND THE BUILT ENVIRONMENT Author Prabin Aryal TRITA­ABE­MBT­20773 Department of Civil and Architectural Engineering Division of Structural Engineering and Bridges KTH Royal Institute of Technology Stockholm, Sweden Examiner Nicole Kringos Stockholm, Sweden KTH Royal Institute of Technology Supervisor Romain Balieu Stockholm, Sweden KTH Royal Institute of Technology iii Abstract These days most of the research related to autonomous vehicle technology focuses on vehicle technology itself and lesser on road infrastructure, including geometric design. This research project aims to lower the deficiency of research works required to make the optimized geometric road design for autonomous vehicle sustainable. In geometric design, significant concerns are designing the road geometrics such as lane width, the radius of horizontal curves, sag vertical curves and crest vertical curves, extra widening, setback distance, and intersection, making the road safer for the vehicles to travel comfortably. Road geometrics is widely designed using the stopping sight distance model, which provides sufficient time to avoid accidents and is efficient. Here in the research work, the stopping sight design model is used for autonomous vehicle technology. At first, the art of autonomous vehicle technology is studied, and a significant difference between autonomous vehicle technology and human-driven vehicle to apply stopping sight distance model is figured out. A literature study is also done for the geometric design of the road for the vehicle with the human driver and autonomous vehicle. The AASHTO model derived for the human-driven vehicle is used and modified for the autonomous vehicle, which gives the optimized geometric design for the autonomous vehicle. The Optimized geometric design parameter is designed individually in AutoCAD Civil 3D. Two road designs follow this in a random rural topography consisting of a normal road design for the vehicle with the human driver and a fully autonomous vehicle. Finally, the sustainability of optimized geometric design compared to road design for the human-driven vehicle is checked in terms of earthwork, pavement surface areas, and pavement materials volume. The result shows that the optimization of a geometric road design for autonomous vehicles is sustainable and extensive research is required. Keywords Autonomous vehicle, Optimization, Geometric design, Highway, Road, AutoCAD Civil 3D, Sustainability, Self-driving car, Vehicle with a human driver, Radius, Horizontal curve, Vertical Curve, Earthwork Sammanfattning Nu för tiden är forskningen kring autonom fordonsteknik mestadels fokuserad på själva fordonstekniken och mindre på väginfrastrukturen, inklusive geometriska design. Således syftar detta forskningsprojekt till att minska arbetsinsatsen för att göra den optimerade geometriska vägkonstruktionen för autonoma fordon hållbar. I geometrisk design är det stora problem att utforma väggeometrierna som körbredd, radie av horisontella kurvor, hängande vertikala kurvor och krönt vertikala kurvor, extra vidgning, baklängesavstånd och korsningar som gör vägen säkrare för fordonet och gör det möjligt att resa bekvämt. Väggeometri är allmänt utformad med hjälp av en stoppsiktmodell som ger tillräckligt med tid för att undvika olyckor. Stoppsiktsmodellen är en effektiv modell och används i detta arbete för autonom fordonsteknik. Först studeras autonoma fordon och jämförs med fordon med en mänsklig förare. Jämförelsen används sedan för att räkna ut hur stoppsiktsmodellen kan tillämpas för autonoma fordon. En litteraturstudie utförs för geometrisk design av väg för fordon med mänsklig förare och autonomt fordon. Sen modifieras en AASHTO modell för mänskligt kontrollerade fordon till autonoma fordon, vilket resulterar i den optimerade geometriska designen för autonoma fordon. Optimerad geometrisk designparameter konstrueras individuellt i AutoCAD civil 3D. Detta följs av två vägkonstruktioner i en slumpmässig topografi bestående av normal vägkonstruktion för fordon med mänsklig förare och en konstruktion för autonomt fordon. Slutligen kontrolleras hållbarheten för den optimerad geometrisk designen för autonoma fordon med vägkonstruktionen för fordon med mänsklig förare i termer av markarbete, beläggningsytor, beläggningsmaterialvolym. Resultatet visar att optimering av geometrisk vägkonstruktion för autonoma fordon är hållbar och omfattande forskning i denna riktning krävs. Nyckelord Autonomt fordon, Optimering, Geometrisk design, Motorväg, Väg, AutoCAD Civil 3D, Hållbarhet, Självkörande bil, Fordon med mänsklig förare, Radie, Horisontell kurva, Vertikal kurva, Markarbete Abbreviations and symbols Abbreviations AASHTO American Association of State Highway And Transportation Officials AV Autonomous Vehicle AADT Annual Average Daily Traffic DSD Decision sight distance EU Europian Union HSO Horizontal sightline Offset NHTSA National Highway Transportation Safety Administration PCE Passenger Car Equivalent PSD Passing sight distance SAE Society of Automotive Engineering SSD Stopping sight distance VHD Vehicle with Human Driver Symbols a acceleration rate, m/s2 R radius of the curve V design speed, Km/h v vehicle speed, m/S e superelevation f fractional factor g acceleration due to gravity Preface This thesis work is conducted at KTH Royal Institute of Technology of Sweden, department of structural Engineering and bridges, under the supervision of Dr. Romain Roger Balieu. This research thesis is related to sustainable optimization possibilities of geometric design of road for an autonomous vehicle using AutoCAD civil 3D software. I want to thank my supervisor Romain for providing valuable suggestions, showing directions and correcting when required throughout the project. I am greatly indebted to his constant support, deep interest in this futuristic research topic and motivation for better output continuously. I would also like to thank my thesis examiner, professor Nicole Kringos, for providing valuable comments with inspiration for the improvement of this thesis work. I would also like to thank Senior Highway Engineer Prem Lamsal for sharing his working experience and expertise to make the thesis work more productive. I would also like to thank my mentors, family members, friends and relatives who always motivated me throughout the journey. My uncle’s family, based in Gothenburg, Sweden, has provided me enormous support, encouragement and love, for which I am forever grateful. Most importantly, I would also like to remember my late mother, who always inspired, nurtured me with her love, care and guidance during my childhood, which became the strong foundation for transforming me into a graduated Engineer. This thesis work is dedicated to my parents and sisters for their endless love, support, and encouragement, without which this piece of work would not have been possible. Stockholm, December 2020 Prabin Aryal Contents 1 Introduction ......................................................................................................................... 7 1.1 Background And Motivation ....................................................................................... 7 1.2 Current Research Status ............................................................................................... 8 1.3 Aim and scope of Research ....................................................................................... 10 1.3.1 Aim of research .................................................................................................. 10 1.3.2 Scope of research ............................................................................................... 10 1.4 Methodology .............................................................................................................. 10 2 Literature Study ................................................................................................................. 11 2.1 State Of Art On Autonomous Vehicle Technology ................................................... 11 2.1.1 Level of Automated Driving .............................................................................. 12 2.1.2 Autonomous vehicle technology and supportive infrastructure ......................... 13 2.1.3 Impacts of Interconnected Autonomous Vehicle ............................................. 16 2.2 Geometric Design of Road ........................................................................................ 19 2.2.1 Control Criteria for Geometric design ............................................................... 19 2.3 Elements of Geometric Design of Road .................................................................... 22 2.3.1 Sight Distance .................................................................................................... 22 2.3.2 Cross-Section ..................................................................................................... 24 2.3.3 Horizontal Alignment ......................................................................................... 25 2.3.4 Vertical Alignment ............................................................................................. 28 2.3.5 Grades ................................................................................................................. 31 2.3.6 Intersection
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages94 Page
-
File Size-