Multiferroic and Magnetoelectric Materials 2

Multiferroic and Magnetoelectric Materials 2

Multiferroic and magnetoelectric materials Maxim Mostovoy University of Groningen Zernike Institute for Advanced Materials ICMR Summer School on Multiferroics Santa Barbara 2008 Outline • Ferroelectric properties of magnetic defects • Toroidal moment and magnetoelectric effect • Electromagnons Electrostatics of magnetic defects Easy plane spins: M = M [e1 cos ϕ + e2 sin ϕ] 2 Polarization: Pa = −γ χe M ε 3ab ∂bϕ Total polarization of domain wall: 2 ∫ dx Py = γ χe M [ϕ(+ ∞)−ϕ(− ∞)] 2 (2) Charge density: ρ = −div P = 2πγ χeM Γδ (x⊥ ) 1 Vortex charge: Q ∝ Γ = ∫ dx⋅∇ϕ winding number 2π C Polarization of domain walls Bloch wall P = 0 e3 || xˆ X P || e × xˆ Néel wall [ 3 ] e3 ⊥ xˆ X e3 Magnetic vortex in magnetic field Q H pseudoscalar moment P P = 0 A ∝ ∑rα ⋅Sα α Magnetic vortex in magnetic field H toroidal moment P = 0 T ∝ ∑rα ×Sα P α Array of magnetic vortices is magnetoelectric H P Outline • Ferroelectric properties of magnetic defects • Toroidal moment and magnetoelectric effect • Electromagnons Multipole expansion Average vector potential A(R) j(r) 1 j(r) A()R = d 3r c ∫ r − R Magnetic dipole moment 1 1 A()1 = −M×∇ M= d3r r× j R 2c ∫ Quadrupole and toroidal moments Quadrupole moment 1 A )2( = −ε Q ∂ ∂ i ijk kl j l R 1 3 Q = d r ([][]r× j r + r× j r ) ij 6c ∫ i j j i Toroidal moment (not in textbooks) 1 A )2( = ∇()T⋅∇ + 4π Tδ ()R R 1 3 T= d r r×[]r× j 6c ∫ Meaning of toroidal moment T = µ r ×S 1 3 B ∑ α α T = d r r ×[]r × j α 6c ∫ T T Spins interacting with inhomogeneous magnetic field H(r) E = −2µB ∑Sα ⋅H(rα ) α Gradient expansion E )0( = −M ⋅H(0) )1( E = −A∇ ⋅H − T⋅∇× H − Qij (∂i H j + ∂ j Hi ) 2 A = − µB ∑rα ⋅Sα 3 α Magnetoelectric properties of magnetic multipoles Φme = −a E⋅H − t ⋅E× H − qij (Ei H j + E j Hi ) Φ H = −A∇ ⋅H − T⋅∇× H − Qij (∂i H j + ∂ j Hi ) The magnetic multipoles have the same symmetry as magnetoelectric tensor a∝ A t ∝ T qij ∝ Qij Magnetoelectric effect Φ me = −λT⋅E× H ∂Φ P = − me = −T× H ∂E ∂Φ M = − me = +T×E ∂H Magnetoelectric effect in spin triangle j = 0 j = π/2 pseudoscalar cos ϕ sin ϕ toroidal α =α0 moment moment −sin ϕ cos ϕ j S1 S1 S2 S3 S2 S3 H H P P Triangular lattice j = -2π/3 j = 0 j = +2 π/3 Cancellation of magnetoelectric effect Pseudoscalar Kagome 1 0 α = α0 0 1 Toroidal Kagome layered Kagomé lattice 0 1 α = α0 −1 0 Magnetoelectric Coupling −3 • KITPITE: α = 3 ⋅ 10 (Gaussian units) LDA+U Cris Delaney & Nicola Spaldin −4 • Cr 2O3 α = 1 ⋅ 10 Outline • Ferroelectric properties of magnetic defects • Toroidal moment and magnetoelectric effect • Electromagnons Phonon-magnon continuum H me = −P∑λijk ui (S j ⋅Sk ) ijk Lorenzana & Sawatzky (1995) magnon photon phonon magnon Suzuura et al (1996) ‘Charged magnons’ in NaV 2O5 Damascelli et al (1998) magnon photon magnon Photoexitation of magnons PL∂L photon (ω )0, Electro magnon (ω,Q) phonon λ ,0( Q) SDW H. Katsura et al. (2006) Magnons in spiral state of RMnO 3 electromagnon Electromagnon mode c P P || c P || a a b bc–spiral E || a ab–spiral H > H H < H C C Softening at H C ~ divergent εεεa Magnetic field dependence T. Kimura et al (2005) N. Kida et al (2008) Eu 1-xYxMnO 3 ab spiral E || a R. V. Aguilar et al (2007) Q || b RMnO 3 b Alternation of J E || a 1' along Q -δJ -δJ 2 2' +δ J +δ J E || a excites single magnon 1 a Q || b RMnO 3 b Alternation of J E || b 1' orthogonal to Q +δ J -δJ 2 2' +δ J -δJ no coupling to single magnon 1 a Magnons in spiral state of RMnO 3 electro- magnon Bi-magnon continuum e || a 0.012 0.01 0.008 χ′′ 0.006 DOS 0.004 0.002 0 0 20 40 60 80 100 120 Photon frequency (cm -1 ) Conclusions • Magnetic frustration gives rise to unusual spin orders that break inversion symmetry and give rise to multiferroic behavior and linear magnetoelectric effect.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us