Orthogonal Polynomials: Gram-Schmidt Process

Orthogonal Polynomials: Gram-Schmidt Process

1 Chebyshev Polynomials: w (x) = p on [−1; 1] 1 − x2 Orthogonal Polynomials: Gram-Schmidt process Thm: The set of polynomial functions fφ0; ··· ; φng defined below on [a; b] is orthogonal with respect to the weight function w. φ0 (x) = 1; φ1 (x) = x − B1; and for k ≥ 2 φk (x) = (x − Bk ) φk−1 (x) − Ck φk−2 (x) ; with R b 2 a x w (x) φj−1 (x) d x Bj = ; j = 1; 2; ··· ; n; R b 2 a w (x) φj−1 (x) d x R b a x w (x) φj−1 (x) φj−2 (x) d x Cj = ; j = 2; 3; ··· ; n: R b 2 a w (x) φj−2 (x) d x Orthogonal Polynomials: Gram-Schmidt process Thm: The set of polynomial functions fφ0; ··· ; φng defined below on [a; b] is orthogonal with respect to the weight function w. φ0 (x) = 1; φ1 (x) = x − B1; and for k ≥ 2 φk (x) = (x − Bk ) φk−1 (x) − Ck φk−2 (x) ; with R b 2 a x w (x) φj−1 (x) d x Bj = ; j = 1; 2; ··· ; n; R b 2 a w (x) φj−1 (x) d x R b a x w (x) φj−1 (x) φj−2 (x) d x Cj = ; j = 2; 3; ··· ; n: R b 2 a w (x) φj−2 (x) d x 1 Chebyshev Polynomials: w (x) = p on [−1; 1] 1 − x2 I Let x = cos (θ) ; θ 2 [0; π]. Then φj (x) = cos (jθ) ; j = 0; 1: I Induction hypothesis with x = cos (θ) ; θ 2 [0; π]: cos(jθ) φj (x) = 2j−1 for j = 2; ··· ; n − 1 . I By Gram-Schmidt, for n ≥ 2 φn (x) = (x − Bn) φn−1 (x) − Cn φn−2 (x) ; with R 1 2 −1 x w (x) φn−1 (x) d x Bn = ; R 1 2 −1 w (x) φn−1 (x) d x R 1 −1 x w (x) φn−1 (x) φn−2 (x) d x Cn = : R 1 2 −1 w (x) φn−2 (x) x8.3 Chebyshev Polynomials/Power Series Economization Chebyshev: Gram-Schmidt for orthogonal polynomial functions fφ ; ··· ; φ g on [−1; 1] with weight function w (x) = p 1 . 0 n 1−x2 R 1 p x d x −1 1−x2 I φ0 (x) = 1; φ1 (x) = x − B1, with B1 = 1 = 0: R p 1 d x −1 1−x2 I By Gram-Schmidt, for n ≥ 2 φn (x) = (x − Bn) φn−1 (x) − Cn φn−2 (x) ; with R 1 2 −1 x w (x) φn−1 (x) d x Bn = ; R 1 2 −1 w (x) φn−1 (x) d x R 1 −1 x w (x) φn−1 (x) φn−2 (x) d x Cn = : R 1 2 −1 w (x) φn−2 (x) x8.3 Chebyshev Polynomials/Power Series Economization Chebyshev: Gram-Schmidt for orthogonal polynomial functions fφ ; ··· ; φ g on [−1; 1] with weight function w (x) = p 1 . 0 n 1−x2 R 1 p x d x −1 1−x2 I φ0 (x) = 1; φ1 (x) = x − B1, with B1 = 1 = 0: R p 1 d x −1 1−x2 I Let x = cos (θ) ; θ 2 [0; π]. Then φj (x) = cos (jθ) ; j = 0; 1: I Induction hypothesis with x = cos (θ) ; θ 2 [0; π]: cos(jθ) φj (x) = 2j−1 for j = 2; ··· ; n − 1 . x8.3 Chebyshev Polynomials/Power Series Economization Chebyshev: Gram-Schmidt for orthogonal polynomial functions fφ ; ··· ; φ g on [−1; 1] with weight function w (x) = p 1 . 0 n 1−x2 R 1 p x d x −1 1−x2 I φ0 (x) = 1; φ1 (x) = x − B1, with B1 = 1 = 0: R p 1 d x −1 1−x2 I Let x = cos (θ) ; θ 2 [0; π]. Then φj (x) = cos (jθ) ; j = 0; 1: I Induction hypothesis with x = cos (θ) ; θ 2 [0; π]: cos(jθ) φj (x) = 2j−1 for j = 2; ··· ; n − 1 . I By Gram-Schmidt, for n ≥ 2 φn (x) = (x − Bn) φn−1 (x) − Cn φn−2 (x) ; with R 1 2 −1 x w (x) φn−1 (x) d x Bn = ; R 1 2 −1 w (x) φn−1 (x) d x R 1 −1 x w (x) φn−1 (x) φn−2 (x) d x Cn = : R 1 2 −1 w (x) φn−2 (x) 1 cos (θ) cos2 ((n − 1)θ) = cos (θ) (1 + cos (2(n − 1)θ)) 2 1 1 = cos (θ) + (cos ((2n − 3)θ) + cos ((2n − 1)θ)) ; so 2 2 Z π cos (θ) cos2 ((n − 1)θ) d θ 0 Z π 1 1 = cos (θ) + (cos ((2n − 3)θ) + cos ((2n − 1)θ)) d θ = 0; Bn = 0: 0 2 2 Chebyshev Polynomials: Compute Bn cos(jθ) Let x = cos (θ) ; θ 2 [0; π]. Then φj (x) = 2j−1 , 1 1 d x = −sin (θ) d θ; w (x) = p = : 1 − x2 sin (θ) 2 R π cos(θ)cos ((n−1)θ) sin (θ) d θ B = 0 sin(θ) n R π cos2((n−1)θ) 0 sin(θ) sin (θ) d θ R π cos (θ) cos2 ((n − 1)θ) d θ = 0 ; where R π 2 0 cos ((n − 1)θ) d θ Z π cos (θ) cos2 ((n − 1)θ) d θ 0 Z π 1 1 = cos (θ) + (cos ((2n − 3)θ) + cos ((2n − 1)θ)) d θ = 0; Bn = 0: 0 2 2 Chebyshev Polynomials: Compute Bn cos(jθ) Let x = cos (θ) ; θ 2 [0; π]. Then φj (x) = 2j−1 , 1 1 d x = −sin (θ) d θ; w (x) = p = : 1 − x2 sin (θ) 2 R π cos(θ)cos ((n−1)θ) sin (θ) d θ B = 0 sin(θ) n R π cos2((n−1)θ) 0 sin(θ) sin (θ) d θ R π cos (θ) cos2 ((n − 1)θ) d θ = 0 ; where R π 2 0 cos ((n − 1)θ) d θ 1 cos (θ) cos2 ((n − 1)θ) = cos (θ) (1 + cos (2(n − 1)θ)) 2 1 1 = cos (θ) + (cos ((2n − 3)θ) + cos ((2n − 1)θ)) ; so 2 2 Bn = 0: Chebyshev Polynomials: Compute Bn cos(jθ) Let x = cos (θ) ; θ 2 [0; π]. Then φj (x) = 2j−1 , 1 1 d x = −sin (θ) d θ; w (x) = p = : 1 − x2 sin (θ) 2 R π cos(θ)cos ((n−1)θ) sin (θ) d θ B = 0 sin(θ) n R π cos2((n−1)θ) 0 sin(θ) sin (θ) d θ R π cos (θ) cos2 ((n − 1)θ) d θ = 0 ; where R π 2 0 cos ((n − 1)θ) d θ 1 cos (θ) cos2 ((n − 1)θ) = cos (θ) (1 + cos (2(n − 1)θ)) 2 1 1 = cos (θ) + (cos ((2n − 3)θ) + cos ((2n − 1)θ)) ; so 2 2 Z π cos (θ) cos2 ((n − 1)θ) d θ 0 Z π 1 1 = cos (θ) + (cos ((2n − 3)θ) + cos ((2n − 1)θ)) d θ = 0; 0 2 2 Chebyshev Polynomials: Compute Bn cos(jθ) Let x = cos (θ) ; θ 2 [0; π]. Then φj (x) = 2j−1 , 1 1 d x = −sin (θ) d θ; w (x) = p = : 1 − x2 sin (θ) 2 R π cos(θ)cos ((n−1)θ) sin (θ) d θ B = 0 sin(θ) n R π cos2((n−1)θ) 0 sin(θ) sin (θ) d θ R π cos (θ) cos2 ((n − 1)θ) d θ = 0 ; where R π 2 0 cos ((n − 1)θ) d θ 1 cos (θ) cos2 ((n − 1)θ) = cos (θ) (1 + cos (2(n − 1)θ)) 2 1 1 = cos (θ) + (cos ((2n − 3)θ) + cos ((2n − 1)θ)) ; so 2 2 Z π cos (θ) cos2 ((n − 1)θ) d θ 0 Z π 1 1 = cos (θ) + (cos ((2n − 3)θ) + cos ((2n − 1)θ)) d θ = 0; Bn = 0: 0 2 2 cos (θ) cos ((n − 1)θ) cos ((n − 2)θ) 1 = cos ((n − 1)θ)(cos ((n − 1)θ) + cos ((n − 3)θ)) 2 1 = (1 + cos (2(n − 1)θ) + cos (2(n − 2)θ) + cos (2θ)) ; so 4 Z π π 2 ; for n = 2, cos (θ) cos ((n − 1)θ) cos ((n − 2)θ) d θ = π 0 4 ; for n > 2. Chebyshev Polynomials: Compute Cn (I) cos(jθ) Let x = cos (θ) ; θ 2 [0; π]. Then φj (x) = 2j−1 , 1 1 d x = −sin (θ) d θ; w (x) = p = : 1 − x2 sin (θ) R π cos(θ)cos((n−1)θ) cos((n−2)θ) sin (θ) d θ C = 0 sin(θ) n R π cos2((n−2)θ) 2 0 sin(θ) sin (θ) d θ R π cos (θ) cos ((n − 1)θ) cos ((n − 2)θ) d θ = 0 ; where R π 2 2 0 cos ((n − 2)θ) d θ Z π π 2 ; for n = 2, cos (θ) cos ((n − 1)θ) cos ((n − 2)θ) d θ = π 0 4 ; for n > 2. Chebyshev Polynomials: Compute Cn (I) cos(jθ) Let x = cos (θ) ; θ 2 [0; π]. Then φj (x) = 2j−1 , 1 1 d x = −sin (θ) d θ; w (x) = p = : 1 − x2 sin (θ) R π cos(θ)cos((n−1)θ) cos((n−2)θ) sin (θ) d θ C = 0 sin(θ) n R π cos2((n−2)θ) 2 0 sin(θ) sin (θ) d θ R π cos (θ) cos ((n − 1)θ) cos ((n − 2)θ) d θ = 0 ; where R π 2 2 0 cos ((n − 2)θ) d θ cos (θ) cos ((n − 1)θ) cos ((n − 2)θ) 1 = cos ((n − 1)θ)(cos ((n − 1)θ) + cos ((n − 3)θ)) 2 1 = (1 + cos (2(n − 1)θ) + cos (2(n − 2)θ) + cos (2θ)) ; so 4 Chebyshev Polynomials: Compute Cn (I) cos(jθ) Let x = cos (θ) ; θ 2 [0; π].

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    64 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us