Linear Combinations & Matrices

Linear Combinations & Matrices

Linear Algebra II: linear combinations & matrices Math Tools for Neuroscience (NEU 314) Fall 2016 Jonathan Pillow Princeton Neuroscience Institute & Psychology. Lecture 3 (Thursday 9/22) accompanying notes/slides Linear algebra “Linear algebra has become as basic and as applicable as calculus, and fortunately it is easier.” - Glibert Strang, Linear algebra and its applications today’s topics • linear projection (review) • orthogonality (review) • linear combination • linear independence / dependence • matrix operations: transpose, multiplication, inverse Did not get to: • vector space • subspace • basis • orthonormal basis Linear Projection Exercise w = [2,2] v1 = [2,1] v2 = [5,0] Compute: Linear projection of w onto lines defined by v1 and v2 linear combination is clearly a vector space [verify]. • scaling and summing applied to a group of vectors Working backwards, a set of vectors is said to span a vector space if one can write any v vector in the vector space as a linear com- 1 v3 bination of the set. A spanning set can be redundant: For example, if two of the vec- tors are identical, or are scaled copies of each other. This redundancy is formalized by defining linear• a independence group of vectors.Asetofvec- is linearly tors {⃗v1,⃗v2,...⃗vdependentM } is linearly independent if one can if be written as v2 (and only if) thea only linear solution combination to the equation of the others • otherwise,αn⃗vn =0 linearly independent !n is αn =0(for all n). A basis for a vector space is a linearly in- dependent spanning set. For example, con- sider the plane of this page. One vector is not enough to span the plane. Scalar multi- v ples of this vector will trace out a line (which v v v 2 is a subspace), but cannot “get off the line” vv 2 1 v v to cover the rest of the plane. But two vec- 1 v v tors are sufficient to span the entire plane. 1 Bases are not unique: any two vectors will do, as long as they don’t lie along the same line. Three vectors are redundant: one can always be written as a linear combination of the other two. In general, the vector space N R requires a basis of size N. e Geometrically, the basis vectors define a set of coordinate axes for the space (although e ˆ2 they need not be perpendicular). The stan- e dard basis is the set of unit vectors that lie along the axes of the space: 1 0 0 eˆ1 ⎛ 0 ⎞ ⎛ 1 ⎞ ⎛ 0 ⎞ eˆ1 = ⎜ 0 ⎟, eˆ2 = ⎜ 0 ⎟,...eˆN = ⎜ 0 ⎟. ⎜ . ⎟ ⎜ . ⎟ ⎜ . ⎟ ⎜ . ⎟ ⎜ . ⎟ ⎜ . ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ v ⎜ 0 ⎟ ⎜ 0 ⎟ ⎜ 1 ⎟ S x ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 5 x S e ) v x e x S x S e x e v x S e S x) v x e x S x S e x e o o o o o 3 o o o o o 3 matrices n × m matrix can think of it as: m column vectors n row vectors r1 … c1 … cm or rn matrix multiplication One perspective: dot product with each row: matrix multiplication Other perspective: linear combination of columns u1 v1 • • c1 … cm • • • • un vm = v1• c1 + v2• c2 + … + vm• cm transpose • flipping around the diagonal T 1 4 7 1 2 3 square 2 5 8 = 4 5 6 matrix 3 6 9 7 8 9 T 1 4 1 2 3 2 5 = 4 5 6 non-square 3 6 • transpose of a product inverse • If A is a square matrix, its inverse A-1 (if it exists) obeys • inverse of a product.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us