University of California San Diego

University of California San Diego

UNIVERSITY OF CALIFORNIA SAN DIEGO Collagen’s Role in the Dermal Armor of the Boxfish A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Materials Science and Engineering by Sean Nolan Garner Committee in charge Professor Joanna M. McKittrick, Chair Professor Shengqiang Cai Professor Marc Meyers 2018 The Thesis of Sean Nolan Garner is approved and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California San Diego 2018 iii Dedication Thank you for teaching me the significance of light-heartedness and comradery. Your contagious passion and giving nature have left me inspired to do good, whether big or small. You shocked everyone around you with your ability to bring people together. To my beloved friend, Kenneth Yun (1994-2017). iv Table of Contents Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents ................................................................................................................ v List of Figures ................................................................................................................... vii Acknowledgements ............................................................................................................. x Abstract of the Thesis ........................................................................................................ xi 1 Introduction ..................................................................................................................... 1 2 Background ..................................................................................................................... 7 2.1 General Information and Phylogeny of Boxfish ........................................................7 2.2 Scute Structure ...........................................................................................................8 2.3 Collagen Structure....................................................................................................14 2.3.1 Heirarchical Structure of Collagen Fibrils ....................................................... 14 2.3.2 Small Angle X-ray Scattering .......................................................................... 17 2.3.3 The Bouligand-type Structure .......................................................................... 20 2.3.4 The Nested-bowl Structure .............................................................................. 26 2.4 Mechanical Characterization ....................................................................................27 3 Hypothesis ..................................................................................................................... 30 4 Materials and Methods .................................................................................................. 31 4.1 Confocal Microscopy ...............................................................................................31 4.2 Micro-Computed Tomography ................................................................................31 v 4.3 Nanoindentation .......................................................................................................31 4.3.1 Nanoindentation Data Analysis ....................................................................... 32 4.4 In-situ Scanning Electron Microscopy.....................................................................34 4.5 In-situ Small Angle X-ray Scattering ......................................................................34 5 Results and Discussion .................................................................................................. 37 5.1 Confocal Microscopy ...............................................................................................37 5.2 Micro-Computed Tomography ................................................................................39 5.3 Nanoindentation .......................................................................................................42 5.4 In-situ Scanning Electron Microscopy.....................................................................43 5.5 Small Angle X-ray Scattering ..................................................................................48 6 Applications and Bioinspiration .................................................................................... 53 7 Conclusions ................................................................................................................... 58 7.1 Recommendations for Future Research ..............................................................60 Appendix............................................................................................................................62 Appendix A. Staining Protocol ......................................................................................62 Appendix B. Rehydration of Boxfish Scutes Protocol ..................................................64 References..........................................................................................................................65 vi List of Figures Figure 1. Various dermal armors of fishes. ……………………………………………1 Figure 2. The Arapaima gigas employs a natural dermal armor to protect against predators, including the piranha. Figure adapted from [2]. ………………....2 Figure 3. Examples of Bouligand-type structure found in nature. Figure adapted from [3,5]. …………………………………………………………………………3 Figure 4. Bioinspired additive manufacturing (robocasting) of alumina platelets into fibers with and without a Bouligand-type structure in in-situ double cantilever beam testing. Figure adapted form [6]……………………………4 Figure 5. Image of the beetle C.gloriosa which exhibits iridescence as a result of its Bouligand structure. Figure adapted from [9]……………………………….5 Figure 6. Image of biotemplated crustaceous chitosan hydrogel that changes color in response to change in the pH of its solvent. Figure adapted from [8]…….....6 Figure 7. Maximum likelihood phylogenetic hypothesis of boxfish. Figure adapted from [7]. ……………………………………………………………………..7 Figure 8. Vorticity patterns during 20o pitch angles of two differently shaped boxfish species: (a) R. triqueter and (b) O. cubicus. Image taken from [9]. ………...8 Figure 9. Micro-computed tomography images of the boxfish, Lactoria cornuta. (a) Perspective view; (b) Ventral view; (c) Sinister view; (d) Anterior view. Scale bars: (a–d) 5 mm. Figure adapted from [6]. …………………………..9 Figure 10. Various sutured interfaces found in biological materials. Figure adapted from [14]. …………………………………………………………………..10 Figure 11. Schematic of mineralized plates and walls that make up a boxfish scute. Figure adapted from [4]. …………………………………………………...11 Figure 12. Three types of honeycomb sandwich structures: (a) hexagonal honeycomb, (b) square honeycomb and (c) triangular honeycomb. Figure adapted from [20]. ………………………………………………………………………...12 Figure 13. Examples of bioinspired sandwich composites. Figure adapted from [22,23].……………………………………………………………………...14 Figure 14. Ashby plot revealing the differences in toughness (fracture energy) and stiffness (Young’s modulus) among biomaterials made from collagen and hydroxyapatite. Figure adapted from [24].………………………………....15 Figure 15. Hierarchical assembly of collagen fibrils. Figure adapted from [25]….…...16 Figure 16. Hierarchical assembly of bone and its deformation response to tensile load at the tissue level, fibril array level, and mineralized collagen fibrils. Figure adapted from [26].………………………………………………………….17 Figure 17. Small-angle X-ray scattering (SAXS) diffraction pattern from Arapaima gigas scales. Figure adapted from [2].……………………………………..19 Figure 18. In-situ small-angle X-ray scattering (SAXS) analysis on A. gigas scale collagen structure. Figure adapted from [2].…………...…..……………....20 Figure 19. (a) Plywood structure with 90o rotation of fibrils in each layer. (b) Twisted plywood structure with a small angle rotation between each equidistant layer. When observed through an oblique slice the structure reveals its characteristic arcs. Figure adapted from [4]. ………………………………21 vii Figure 20. Examples of animals that contain Bouligand-type structures. Figure adapted from [5,37,38]. ……………………………………………………………..23 Figure 21. (a) Top view of mineralized surface of boxfish (Lactoria cornuta); (b), (c) Scanning electron microscopy of top view with mineral plate removed revealing an apparent ladder-like structure. Scale bars: (a) 500 µm; (b) 100 µm; (c) 5 µm. ………………………………………………………………24 Figure 22. Scanning electron microscope (SEM) image of the cross-section of the exoskeleton of the cuticle in a lobster Homarus americanus. Figure adapted from [41]. …………………………………………………………………..25 Figure 23. Transverse section of boxfish scute using optical microscopy between crossed polar. Figure adapted from [4]……………………………………..25 Figure 24. The nested-bowl structure found in the scute of the boxfish (). (a) Simplified schematic of collagen structure in boxfish scute; (b) Confocal microscope image of cross-section of boxfish scute revealing the nested-bowl structure. (a) adapted from [4]. ……………………………………………………….27 Figure 25. Tensile stress-strain results of two connected boxfish (Lactoria cornuta) scutes. Both wet and dehydrated samples were tested with the

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    82 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us