Path Integration in Statistical Field Theory: from QM to Interacting Fermion Systems

Path Integration in Statistical Field Theory: from QM to Interacting Fermion Systems

Path Integration in Statistical Field Theory: from QM to Interacting Fermion Systems Andreas Wipf Theoretisch-Physikalisches Institut Friedrich-Schiller-University Jena Methhods of Path Integration in Modern Physics 25.-31. August 2019 Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory 1 Introduction 2 Path Integral Approach to Systems in Equilibrium: Finite Number of DOF Canonical approach Path integral formulation 3 Quantized Scalar Field at Finite Temperature Lattice regularization of quantized scalar field theories Äquivalenz to classical spin systems 4 Fermionic Systems at Finite Temperature and Density Path Integral for Fermionic systems Thermodynamic potentials of relativistic particles 5 Interacting Fermions Interacting fermions in condensed matter systems Massless GN-model at Finite Density in Two Dimensions Interacting fermions at finite density in d = 1 + 1 Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory why do we discretize quantum (field) theories? 2 / 79 weakly coupled subsystems: perturbation theory if not: strongly coupled system properties can only be explained by strong correlations of subsystems example of strongly coupled systems: ultra-cold atoms in optical lattices high-temperature superconductors statistical systems near phase transitions strong interaction at low energies Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory theoretical approaches 3 / 79 exactly soluble models (large symmetry, QFT, TFT) approximations mean field, strong coupling expansion, . restiction to effective degrees of freedom Born-Oppenheimer approximation, Landau-theory, . functional methods Schwinger-Dyson equations functional renormalization group equation numerical simulations lattice field theories = particular classical spin systems ) powerful methods of statistical physics and stochastics Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory Quantum mechanical system in thermal equilibrium Hamiltonian H^ : H 7! H system in thermal equilibrium with heat bath 1 ^ ^ −βH^ 1 canonical %^β = K (β); K (β) = e ; β = Zβ kT normalizing partition function ^ Zβ = tr K (β) expectation value of observable O^ in ensemble ^ ^ hOiβ = tr %^βO Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory thermodynamic potentials 5 / 79 inner and free energy @ U = hH^i = − log Z ; F = −kT log Z β @β β β β ) all thermodynamic potentials, entropy S = −@T F,... specific heat @U C = hH^ 2i − hH^i2 = − > 0 V β β @β system of particles: specify Hilbert space and H^ identical bosons: symmetric states identical fermions: antisymmetric states traces on different Hilbert spaces Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory quantum statistics: canonical approach 6 / 79 Path integral for partition function in quantum mechanics euclidean evolution operator K^ satisfies diffusion type equation ^ d K^(β) = e−βH =) K^(β) = −H^K^(β) dβ compare with time-evolution operator and Schrödinger equation − H^= d U^(t) = e i ~ =) i~ U^(t) = H^U^(t) dt formally: U^(t = −i~β) = K^(β), imaginary time ~ quantum fluctuations, kT thermal fluctuations Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory heat kernel 7 / 79 evaluate trace in position space Z −βH^ 0 0 hqj e jq i = K (β; q; q ) =) Zβ = dq K (β; q; q) 0 0 “initial condition” for kernel: limβ!0 K (β; q; q ) = δ(q; q ) free particle in d dimensions (Brownian motion) 2 m d=2 − m (q0−q)2 ^ ~ 0 2 2β H0 = − ∆ =) K0(β; q; q ) = e ~ 2m 2π~2β ^ ^ ^ Hamiltonian H = H0 + V bounded from below ) ^ ^ ^ ^ n e−β(H0+V ) = s − lim e−βH0=n e−βV =n ; V^ = V (q^) n!1 Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory derivation of path integral 8 / 79 insert for every identity 1 in − β H^ − β V^ − β H^ − β V^ − β H^ − β V^ e n 0 e n 1 e n 0 e n 1 ··· 1 e n 0 e n the resolution 1 = R dq jqihqj) n 0 0 − β H^ − β V^ K β; q ; q = lim q e n 0 e n q n!1 j=n−1 Z β ^ β ^ Y − H0 − V = lim dq1 ··· dqn−1 qj+1 e n e n qj ; n!1 j=0 0 initial and final positions q0 = q and qn = q define small " = ~β=n and finally use β β − V (q^) − V (qj ) e n qj = qj e n β ^ m d=2 m 2 − H0 − (qj+1−qj ) qj+1 e n qj = e 2~" 2π~" Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory derivation of path integral 9 / 79 discretized “path integral” Z n=2 0 m K (β; q ; q)= lim dq1 ··· dqn−1 n!1 2π~" 8 j=n−1 9 2 < " X m qj+1 − qj = · exp − + V (q ) 2 j : ~ j=0 ; divide interval [0; ~β] into n sub-intervals of length " = ~β=n consider path q(τ) with sampling points q(τ = k") = qk q q1 q2 qn =q′ q=q0 s 0 ε 2ε nε=~β Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory interpretation as path integral 10 / 79 Riemann sum in exponent approximates Riemann integral β Z m S [q] = dτ q_ 2(τ)+V (q(τ)) E 2 0 SE is Euclidean action( / action for imaginary time) integration over all sampling points n−!!1 formal path integral Dq path integral with real and positive density q( β)=q0 ~Z K (β; q0; q) = C Dq e−SE [q]=~ q(0)=q Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory partition function as path integral 11 / 79 on diagonal = integration over all path q ! q q(~β)=q ^ Z K (β; q; q) = hqj e−βH jqi = C Dq e−SE [q]=~ q(0)=q trace ^ Z ^ I tr e−βH = dq hqj e−βH jqi = C Dq e−SE [q]=~ q(0)=q(~β) partition function Z(β) integral over all periodic paths with period ~β. can construct well-defined Wiener-measure measure(differentable paths)= 0 measure(continuous paths)= 1 Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory not only classical paths contribute 12 / 79 Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory Mehler’s formula 13 / 79 exercise (Mehler formula) show that the harmonic oscillator with Hamiltonian 2 2 2 ^ ~ d m! 2 H! = − + q 2m dq2 2 has heat kernel r 0 0 m! n m! 2 02 2qq o K!(β; q ; q) = exp − (q +q ) coth(~!β)− 2π~ sinh(~!β) 2~ sinh(~!β) equation of euclidean motion q¨ = !2q has for given q; q0 the solution sinh(!τ) q(τ) = q cosh(!τ) + q0 − q cosh(!β) sinh(!β) action m Z β m! S = (q_ 2 + !2q2) = (q2 + q02) cosh !β − 2qq0 2 0 2 sinh !β Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory second derivative @2S m! = − @q@q0 sinh(!β) semiclassical formula exact for harmonic oscillator s 1 @2S K (β; q0; q) = − e−S 2π @q@q0 yields above results for heat kernel diagonal elements r ( 2 2 ) m! 2m!q sinh (~!β=2) K!(β; q; q) = exp − 2π~ sinh(~!β) ~ sin(~!β) Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory spectrum of harmonic oscillator 15 / 79 partition function 1 −~!β=2 1 e − !β=2 X −n !β Zβ = = = e ~ e ~ 2 sinh( !β=2) 1 − e−~!β ~ n=0 evaluate trace with energy eigenbasis of H^ ) ^ ^ X Z(β) = tr e−βH = hnj e−βH jni = e−βEn n comparison of two sums ) 1 E = ! n + ; n 2 N n ~ 2 Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory thermal correlation functions 16 / 79 position operator ^ ^ q^(t) = eitH=~q^ e−itH=~; q^(0) = q^ imaginary time t = −iτ ) euclidean operator ^ ^ ^ τH=~ ^ −τH=~ ^ ^ qE(τ) = e q e ; qE(0) = q correlations at different0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤ β in ensemble 1 ^ q^ (τ ) ··· q^ (τ ) ≡ tr e−βH q^ (τ ) ··· q^ (τ ) E n E 1 β Z(β) E n E 1 consider thermal two-point function (now we set ~ = 1) 1 ^ ^ ^ hq^ (τ )q^ (τ )i = tr e−(β−τ2)H q^ e−(τ2−τ1)H q^ e−τ1H E 2 E 1 β Z(β) Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory thermal correlation functions 17 / 79 spectral decomposition: jni orthonormal eigenstates of H^ ) 1 X ^ h::: i = e−(β−τ2)En hnjq^ e−(τ2−τ1)H q^jni e−τ1En β Z(β) n insert 1 = P jmihmj ) 1 X h::: i = e−(β−τ2+τ1)En e−(τ2−τ1)Em hnjq^jmihmjq^jni β Z(β) n;m P low temperature β ! 1: contribution of excited states to n(::: ) exponentially suppressed, Z(β) ! exp(−βE0) ) β!1 X ^ ^ −(τ2−τ1)(Em−E0) ^ 2 hqE(τ2)qE(τ1)iβ −! e jh0jqjmij m≥0 likewise ^ ^ hqE(τ)iβ −! h0jqj0i Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory connected correlation functions 18 / 79 connected two-point function ^ ^ ^ ^ ^ ^ hqE(τ2)qE(τ1)ic,β ≡ hqE(τ2)qE(τ1)iβ − hqE(τ2)iβ hqE(τ1)iβ P term with m = 0 in m(::: ) cancels ) exponential decay with τ1 − τ2: X −(τ2−τ1)(Em−E0) 2 lim hq^ (τ2)q^ (τ1)i = e jh0jq^jmij β!1 E E c,β m≥1 2 energy gap E1 − E0 and matrix element jh0jqj1ij from 2 ^ ^ −(E1−E0)(τ2−τ1) ^ hqE(τ2)qE(τ1)ic,β!1 −! e jh0jqj1ij ; τ2 − τ1 ! 1 Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory path integral for thermal correlation function 19 / 79 for path-integral representation consider matrix elements D ^ ^ ^ ^ ^ E q0j e−βH eτ2H q^ e−τ2H eτ1H q^ e−τ1H jq resolution of the identity and q^jui = ujui: Z ^ ^ ^ h::: i = dvdu hq0j e−(β−τ2)H jvivhvj e−(τ2−τ1)H juiuhuj e−τ1H jqi path integral representations each propagator (β > τ2 > τ1): sum over paths with q(0) = q and q(τ1) = u sum over paths with q(τ1) = u and q(τ2) = v 0 sum over paths with q(τ2) = v and q(β) = q multiply with intermediate positions q(τ1) and q(τ2) R dudv: path integral over all paths with q(0) = q and q(β) = q0 Andreas Wipf (TPI Jena) Path Integration in Statistical Field Theory thermal correlation functions 20 / 79 insertion of q(τ2)q(τ1 in path integral 1 I hq^ (τ )q^ (τ )i = Dq e−SE [q] q(τ )q(τ ) E 2 E 1 β Z(β) 2 1 similarly: thermal n−point correlation functions 1 I hq^ (τ ) ··· q^ (τ )i = Dq e−SE [q] q(τ ) ··· q(τ ) E n E 1 β Z(β) n 1 conclusion there exist a path integral representation for all equilibrium quantities, e.g.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    80 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us