A Classic Thesis Style

A Classic Thesis Style

Cover Page The handle http://hdl.handle.net/1887/137440 holds various files of this Leiden University dissertation. Author: Peirone, S. Title: Probing gravity at cosmic scales Issue Date: 2020-10-06 BIBLIOGRAPHY [1] Y. Akrami et al. “Planck 2018 results. I. Overview and the cosmological legacy of Planck.” In: (2018). arXiv: 1807.06205 [astro-ph.CO]. [2] N. Aghanim et al. “Planck 2018 results. VI. Cosmological pa- rameters.” In: (2018). arXiv: 1807.06209 [astro-ph.CO]. [3] Adam G. Riess, Stefano Casertano, Wenlong Yuan, Lucas M. Macri, and Dan Scolnic. “Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond LCDM.” In: Astrophys. J. 876.1 (2019), p. 85. doi: 10.3847/1538- 4357/ab1422. arXiv: 1903.07603 [astro-ph.CO]. [4] Wendy L. Freedman et al. “The Carnegie-Chicago Hubble Pro- gram. VIII. An Independent Determination of the Hubble Con- stant Based on the Tip of the Red Giant Branch.” In: The Astro- physical Journal 882:34 (2019), p. 1. doi: 10.3847/1538- 4357/ ab2f73. arXiv: 1907.05922 [astro-ph.CO]. [5] Kenneth C. Wong et al. “H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3s tension between early and late- Universe probes.” In: (2019). arXiv: 1907.04869 [astro-ph.CO]. [6] Richard A. Battye, Adam Moss, and Jonathan A. Pearson. “Con- straining dark sector perturbations I: cosmic shear and CMB lensing.” In: JCAP 1504 (2015), p. 048. doi: 10 . 1088 / 1475 - 7516/2015/04/048. arXiv: 1409.4650 [astro-ph.CO]. [7] Marika Asgari et al. “KiDS+VIKING-450 and DES-Y1 combined: Mitigating baryon feedback uncertainty with COSEBIs.” In: (2019). arXiv: 1910.05336 [astro-ph.CO]. 151 152 bibliography [8] G. E. Addison, Y. Huang, D. J. Watts, C. L. Bennett, M. Halpern, G. Hinshaw, and J. L. Weiland. “Quantifying discordance in the 2015 Planck CMB spectrum.” In: Astrophys. J. 818.2 (2016), p. 132. doi: 10.3847/0004-637X/818/2/132. arXiv: 1511.00055 [astro-ph.CO]. [9] Niall MacCrann, Joe Zuntz, Sarah Bridle, Bhuvnesh Jain, and Matthew R. Becker. “Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune?” In: Mon. Not. Roy. Astron. Soc. 451.3 (2015), pp. 2877–2888. doi: 10.1093/mnras/stv1154. arXiv: 1408.4742 [astro-ph.CO]. [10] Shahab Joudaki et al. “CFHTLenS revisited: assessing concor- dance with Planck including astrophysical systematics.” In: Mon. Not. Roy. Astron. Soc. 465.2 (2017), pp. 2033–2052. doi: 10.1093/mnras/stw2665. arXiv: 1601.05786 [astro-ph.CO]. [11] Jia Liu, Alvaro Ortiz-Vazquez, and J. Colin Hill. “Constraining Multiplicative Bias in CFHTLenS Weak Lensing Shear Data.” In: Phys. Rev. D93.10 (2016), p. 103508. doi: 10.1103/PhysRevD.93. 103508. arXiv: 1601.05720 [astro-ph.CO]. [12] Justin Alsing, Alan F. Heavens, and Andrew H. Jaffe. “Cos- mological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference.” In: Mon. Not. Roy. Astron. Soc. 466.3 (2017), pp. 3272–3292. doi: 10 . 1093 / mnras/stw3161. arXiv: 1607.00008 [astro-ph.CO]. [13] Luca Amendola and Shinji Tsujikawa. Dark Energy. Cambridge University Press, 2015. [14] Michel Chevallier and David Polarski. “Accelerating universes with scaling dark matter.” In: Int. J. Mod. Phys. D10 (2001), pp. 213–224. doi: 10.1142/S0218271801000822. arXiv: gr-qc/ 0009008 [gr-qc]. bibliography 153 [15] Eric V. Linder. “Exploring the expansion history of the uni- verse.” In: Phys. Rev. Lett. 90 (2003), p. 091301. doi: 10.1103/ PhysRevLett.90.091301. arXiv: astro-ph/0208512 [astro-ph]. [16] Houjun Mo, Frank C. van den Bosch, and Simon White. Galaxy Formation and Evolution. 2010. [17] D. Branch and G. A. Tammann. “Type ia supernovae as standard candles.” In: Ann. Rev. Astron. Astrophys. 30 (1992), pp. 359–389. doi: 10.1146/annurev.aa.30.090192.002043. [18] S. Perlmutter et al. “Measurements of W and L from 42 high redshift supernovae.” In: Astrophys. J. 517 (1999), pp. 565–586. doi: 10.1086/307221. arXiv: astro-ph/9812133 [astro-ph]. [19] Adam G. Riess et al. “Observational evidence from supernovae for an accelerating universe and a cosmological constant.” In: Astron. J. 116 (1998), pp. 1009–1038. doi: 10.1086/300499. arXiv: astro-ph/9805201 [astro-ph]. [20] Donald G. York et al. “The Sloan Digital Sky Survey: Technical Summary.” In: Astron. J. 120 (2000), pp. 1579–1587. doi: 10 . 1086/301513. arXiv: astro-ph/0006396 [astro-ph]. [21] Bhuvnesh Jain and Uros Seljak. “Cosmological model predic- tions for weak lensing: Linear and nonlinear regimes.” In: As- trophys. J. 484 (1997), p. 560. doi: 10.1086/304372. arXiv: astro- ph/9611077 [astro-ph]. [22] Bradley W. Carroll and Dale A. Ostlie. An Introduction to Modern Astrophysics. Ed. by San Francisco: Pearson Addison-Wesley. 2nd (International). 2007. [23] Austin Joyce, Bhuvnesh Jain, Justin Khoury, and Mark Trodden. “Beyond the Cosmological Standard Model.” In: Phys. Rept. 568 (2015), pp. 1–98. doi: 10.1016/j.physrep.2014.12.002. arXiv: 1407.0059 [astro-ph.CO]. 154 bibliography [24] C. Brans and R. H. Dicke. “Mach’s Principle and a Relativistic Theory of Gravitation.” In: Phys. Rev. 124 (3 1961), pp. 925–935. doi: 10.1103/PhysRev.124.925. url: https://link.aps.org/ doi/10.1103/PhysRev.124.925. [25] Timothy Clifton, Pedro G. Ferreira, Antonio Padilla, and Con- stantinos Skordis. “Modified Gravity and Cosmology.” In: Phys. Rept. 513 (2012), pp. 1–189. doi: 10.1016/j.physrep.2012.01. 001. arXiv: 1106.2476 [astro-ph.CO]. [26] Ryo Nagata, Takeshi Chiba, and Naoshi Sugiyama. “WMAP constraints on scalar- tensor cosmology and the variation of the gravitational constant.” In: Phys. Rev. D69 (2004), p. 083512. doi: 10.1103/PhysRevD.69.083512. arXiv: astro-ph/0311274 [astro-ph]. [27] Antonio De Felice and Shinji Tsujikawa. “Generalized Galileon cosmology.” In: Phys. Rev. D84 (2011), p. 124029. doi: 10.1103/ PhysRevD.84.124029. arXiv: 1008.4236 [hep-th]. [28] Alberto Nicolis, Riccardo Rattazzi, and Enrico Trincherini. “The Galileon as a local modification of gravity.” In: Phys. Rev. D79 (2009), p. 064036. doi: 10.1103/PhysRevD.79.064036. arXiv: 0811.2197 [hep-th]. [29] Antonio De Felice and Shinji Tsujikawa. “Cosmology of a covari- ant Galileon field.” In: Phys. Rev. Lett. 105 (2010), p. 111301. doi: 10 . 1103 / PhysRevLett . 105 . 111301. arXiv: 1007 . 2700 [astro-ph.CO]. [30] Savvas Nesseris, Antonio De Felice, and Shinji Tsujikawa. “Ob- servational constraints on Galileon cosmology.” In: Phys. Rev. D82 (2010), p. 124054. doi: 10.1103/PhysRevD.82.124054. arXiv: 1010.0407 [astro-ph.CO]. bibliography 155 [31] Alexandre Barreira, Baojiu Li, Carlton Baugh, and Silvia Pascoli. “The observational status of Galileon gravity after Planck.” In: JCAP 1408 (2014), p. 059. doi: 10.1088/1475-7516/2014/08/059. arXiv: 1406.0485 [astro-ph.CO]. [32] Simone Peirone, Noemi Frusciante, Bin Hu, Marco Raveri, and Alessandra Silvestri. “Do current cosmological observations rule out all Covariant Galileons?” In: Phys. Rev. D97.6 (2018), p. 063518. doi: 10 . 1103 / PhysRevD . 97 . 063518. arXiv: 1711 . 04760 [astro-ph.CO]. [33] Janina Renk, Miguel Zumalacarregui, Francesco Montanari, and Alexandre Barreira. “Galileon Gravity in Light of ISW, CMB, BAO and H0 data.” In: JCAP 1710.10 (2017), p. 020. doi: 10.1088/ 1475-7516/2017/10/020. arXiv: 1707.02263 [astro-ph.CO]. [34] Gregory Walter Horndeski. “Second-order scalar-tensor field equations in a four-dimensional space.” In: Int. J. Theor. Phys. 10 (1974), pp. 363–384. doi: 10.1007/BF01807638. [35] C. Deffayet, Xian Gao, D. A. Steer, and G. Zahariade. “From k-essence to generalised Galileons.” In: Phys. Rev. D84 (2011), p. 064039. doi: 10.1103/PhysRevD.84.064039. arXiv: 1103.3260 [hep-th]. [36] Tsutomu Kobayashi, Masahide Yamaguchi, and Jun’ichi Yokoyama. “Generalized G-inflation: Inflation with the most general second- order field equations.” In: Prog. Theor. Phys. 126 (2011), pp. 511– 529. doi: 10.1143/PTP.126.511. arXiv: 1105.5723 [hep-th]. [37] M. Ostrogradsky. “Mémoires sur les équations différentielles, relatives au problème des isopérimètres.” In: Mem. Acad. St. Petersbourg 6.4 (1850), pp. 385–517. [38] Jérôme Gleyzes, David Langlois, Federico Piazza, and Filippo Vernizzi. “Exploring gravitational theories beyond Horndeski.” In: JCAP 1502 (2015), p. 018. doi: 10.1088/1475-7516/2015/02/ 018. arXiv: 1408.1952 [astro-ph.CO]. 156 bibliography [39] Jèrome Gleyzes, David Langlois, Federico Piazza, and Filippo Vernizzi. “Healthy theories beyond Horndeski.” In: Phys. Rev. Lett. 114.21 (2015), p. 211101. doi: 10.1103/PhysRevLett.114. 211101. arXiv: 1404.6495 [hep-th]. [40] David Langlois and Karim Noui. “Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski insta- bility.” In: JCAP 1602.02 (2016), p. 034. doi: 10 . 1088 / 1475 - 7516/2016/02/034. arXiv: 1510.06930 [gr-qc]. [41] David Langlois and Karim Noui. “Hamiltonian analysis of higher derivative scalar-tensor theories.” In: JCAP 1607.07 (2016), p. 016. doi: 10.1088/1475- 7516/2016/07/016. arXiv: 1512. 06820 [gr-qc]. [42] Giulia Gubitosi, Federico Piazza, and Filippo Vernizzi. “The Effective Field Theory of Dark Energy.” In: JCAP 1302 (2013). [JCAP1302,032(2013)], p. 032. doi: 10.1088/1475-7516/2013/ 02/032. arXiv: 1210.0201 [hep-th]. [43] Jolyon K. Bloomfield, Éanna É. Flanagan, Minjoon Park, and Scott Watson. “Dark energy or modified gravity? An effective field theory approach.” In: JCAP 1308 (2013), p. 010. doi: 10. 1088/1475-7516/2013/08/010. arXiv: 1211.7054 [astro-ph.CO]. [44] Jérôme Gleyzes, David Langlois, Federico Piazza, and Filippo Vernizzi. “Essential Building Blocks of Dark Energy.” In: JCAP 1308 (2013), p. 025. doi: 10 . 1088 / 1475 - 7516 / 2013 / 08 / 025. arXiv: 1304.4840 [hep-th]. [45] Jolyon Bloomfield. “A Simplified Approach to General Scalar- Tensor Theories.” In: JCAP 1312 (2013), p.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us