
Cover Page The handle http://hdl.handle.net/1887/137440 holds various files of this Leiden University dissertation. Author: Peirone, S. Title: Probing gravity at cosmic scales Issue Date: 2020-10-06 BIBLIOGRAPHY [1] Y. Akrami et al. “Planck 2018 results. I. Overview and the cosmological legacy of Planck.” In: (2018). arXiv: 1807.06205 [astro-ph.CO]. [2] N. Aghanim et al. “Planck 2018 results. VI. Cosmological pa- rameters.” In: (2018). arXiv: 1807.06209 [astro-ph.CO]. [3] Adam G. Riess, Stefano Casertano, Wenlong Yuan, Lucas M. Macri, and Dan Scolnic. “Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond LCDM.” In: Astrophys. J. 876.1 (2019), p. 85. doi: 10.3847/1538- 4357/ab1422. arXiv: 1903.07603 [astro-ph.CO]. [4] Wendy L. Freedman et al. “The Carnegie-Chicago Hubble Pro- gram. VIII. An Independent Determination of the Hubble Con- stant Based on the Tip of the Red Giant Branch.” In: The Astro- physical Journal 882:34 (2019), p. 1. doi: 10.3847/1538- 4357/ ab2f73. arXiv: 1907.05922 [astro-ph.CO]. [5] Kenneth C. Wong et al. “H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3s tension between early and late- Universe probes.” In: (2019). arXiv: 1907.04869 [astro-ph.CO]. [6] Richard A. Battye, Adam Moss, and Jonathan A. Pearson. “Con- straining dark sector perturbations I: cosmic shear and CMB lensing.” In: JCAP 1504 (2015), p. 048. doi: 10 . 1088 / 1475 - 7516/2015/04/048. arXiv: 1409.4650 [astro-ph.CO]. [7] Marika Asgari et al. “KiDS+VIKING-450 and DES-Y1 combined: Mitigating baryon feedback uncertainty with COSEBIs.” In: (2019). arXiv: 1910.05336 [astro-ph.CO]. 151 152 bibliography [8] G. E. Addison, Y. Huang, D. J. Watts, C. L. Bennett, M. Halpern, G. Hinshaw, and J. L. Weiland. “Quantifying discordance in the 2015 Planck CMB spectrum.” In: Astrophys. J. 818.2 (2016), p. 132. doi: 10.3847/0004-637X/818/2/132. arXiv: 1511.00055 [astro-ph.CO]. [9] Niall MacCrann, Joe Zuntz, Sarah Bridle, Bhuvnesh Jain, and Matthew R. Becker. “Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune?” In: Mon. Not. Roy. Astron. Soc. 451.3 (2015), pp. 2877–2888. doi: 10.1093/mnras/stv1154. arXiv: 1408.4742 [astro-ph.CO]. [10] Shahab Joudaki et al. “CFHTLenS revisited: assessing concor- dance with Planck including astrophysical systematics.” In: Mon. Not. Roy. Astron. Soc. 465.2 (2017), pp. 2033–2052. doi: 10.1093/mnras/stw2665. arXiv: 1601.05786 [astro-ph.CO]. [11] Jia Liu, Alvaro Ortiz-Vazquez, and J. Colin Hill. “Constraining Multiplicative Bias in CFHTLenS Weak Lensing Shear Data.” In: Phys. Rev. D93.10 (2016), p. 103508. doi: 10.1103/PhysRevD.93. 103508. arXiv: 1601.05720 [astro-ph.CO]. [12] Justin Alsing, Alan F. Heavens, and Andrew H. Jaffe. “Cos- mological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference.” In: Mon. Not. Roy. Astron. Soc. 466.3 (2017), pp. 3272–3292. doi: 10 . 1093 / mnras/stw3161. arXiv: 1607.00008 [astro-ph.CO]. [13] Luca Amendola and Shinji Tsujikawa. Dark Energy. Cambridge University Press, 2015. [14] Michel Chevallier and David Polarski. “Accelerating universes with scaling dark matter.” In: Int. J. Mod. Phys. D10 (2001), pp. 213–224. doi: 10.1142/S0218271801000822. arXiv: gr-qc/ 0009008 [gr-qc]. bibliography 153 [15] Eric V. Linder. “Exploring the expansion history of the uni- verse.” In: Phys. Rev. Lett. 90 (2003), p. 091301. doi: 10.1103/ PhysRevLett.90.091301. arXiv: astro-ph/0208512 [astro-ph]. [16] Houjun Mo, Frank C. van den Bosch, and Simon White. Galaxy Formation and Evolution. 2010. [17] D. Branch and G. A. Tammann. “Type ia supernovae as standard candles.” In: Ann. Rev. Astron. Astrophys. 30 (1992), pp. 359–389. doi: 10.1146/annurev.aa.30.090192.002043. [18] S. Perlmutter et al. “Measurements of W and L from 42 high redshift supernovae.” In: Astrophys. J. 517 (1999), pp. 565–586. doi: 10.1086/307221. arXiv: astro-ph/9812133 [astro-ph]. [19] Adam G. Riess et al. “Observational evidence from supernovae for an accelerating universe and a cosmological constant.” In: Astron. J. 116 (1998), pp. 1009–1038. doi: 10.1086/300499. arXiv: astro-ph/9805201 [astro-ph]. [20] Donald G. York et al. “The Sloan Digital Sky Survey: Technical Summary.” In: Astron. J. 120 (2000), pp. 1579–1587. doi: 10 . 1086/301513. arXiv: astro-ph/0006396 [astro-ph]. [21] Bhuvnesh Jain and Uros Seljak. “Cosmological model predic- tions for weak lensing: Linear and nonlinear regimes.” In: As- trophys. J. 484 (1997), p. 560. doi: 10.1086/304372. arXiv: astro- ph/9611077 [astro-ph]. [22] Bradley W. Carroll and Dale A. Ostlie. An Introduction to Modern Astrophysics. Ed. by San Francisco: Pearson Addison-Wesley. 2nd (International). 2007. [23] Austin Joyce, Bhuvnesh Jain, Justin Khoury, and Mark Trodden. “Beyond the Cosmological Standard Model.” In: Phys. Rept. 568 (2015), pp. 1–98. doi: 10.1016/j.physrep.2014.12.002. arXiv: 1407.0059 [astro-ph.CO]. 154 bibliography [24] C. Brans and R. H. Dicke. “Mach’s Principle and a Relativistic Theory of Gravitation.” In: Phys. Rev. 124 (3 1961), pp. 925–935. doi: 10.1103/PhysRev.124.925. url: https://link.aps.org/ doi/10.1103/PhysRev.124.925. [25] Timothy Clifton, Pedro G. Ferreira, Antonio Padilla, and Con- stantinos Skordis. “Modified Gravity and Cosmology.” In: Phys. Rept. 513 (2012), pp. 1–189. doi: 10.1016/j.physrep.2012.01. 001. arXiv: 1106.2476 [astro-ph.CO]. [26] Ryo Nagata, Takeshi Chiba, and Naoshi Sugiyama. “WMAP constraints on scalar- tensor cosmology and the variation of the gravitational constant.” In: Phys. Rev. D69 (2004), p. 083512. doi: 10.1103/PhysRevD.69.083512. arXiv: astro-ph/0311274 [astro-ph]. [27] Antonio De Felice and Shinji Tsujikawa. “Generalized Galileon cosmology.” In: Phys. Rev. D84 (2011), p. 124029. doi: 10.1103/ PhysRevD.84.124029. arXiv: 1008.4236 [hep-th]. [28] Alberto Nicolis, Riccardo Rattazzi, and Enrico Trincherini. “The Galileon as a local modification of gravity.” In: Phys. Rev. D79 (2009), p. 064036. doi: 10.1103/PhysRevD.79.064036. arXiv: 0811.2197 [hep-th]. [29] Antonio De Felice and Shinji Tsujikawa. “Cosmology of a covari- ant Galileon field.” In: Phys. Rev. Lett. 105 (2010), p. 111301. doi: 10 . 1103 / PhysRevLett . 105 . 111301. arXiv: 1007 . 2700 [astro-ph.CO]. [30] Savvas Nesseris, Antonio De Felice, and Shinji Tsujikawa. “Ob- servational constraints on Galileon cosmology.” In: Phys. Rev. D82 (2010), p. 124054. doi: 10.1103/PhysRevD.82.124054. arXiv: 1010.0407 [astro-ph.CO]. bibliography 155 [31] Alexandre Barreira, Baojiu Li, Carlton Baugh, and Silvia Pascoli. “The observational status of Galileon gravity after Planck.” In: JCAP 1408 (2014), p. 059. doi: 10.1088/1475-7516/2014/08/059. arXiv: 1406.0485 [astro-ph.CO]. [32] Simone Peirone, Noemi Frusciante, Bin Hu, Marco Raveri, and Alessandra Silvestri. “Do current cosmological observations rule out all Covariant Galileons?” In: Phys. Rev. D97.6 (2018), p. 063518. doi: 10 . 1103 / PhysRevD . 97 . 063518. arXiv: 1711 . 04760 [astro-ph.CO]. [33] Janina Renk, Miguel Zumalacarregui, Francesco Montanari, and Alexandre Barreira. “Galileon Gravity in Light of ISW, CMB, BAO and H0 data.” In: JCAP 1710.10 (2017), p. 020. doi: 10.1088/ 1475-7516/2017/10/020. arXiv: 1707.02263 [astro-ph.CO]. [34] Gregory Walter Horndeski. “Second-order scalar-tensor field equations in a four-dimensional space.” In: Int. J. Theor. Phys. 10 (1974), pp. 363–384. doi: 10.1007/BF01807638. [35] C. Deffayet, Xian Gao, D. A. Steer, and G. Zahariade. “From k-essence to generalised Galileons.” In: Phys. Rev. D84 (2011), p. 064039. doi: 10.1103/PhysRevD.84.064039. arXiv: 1103.3260 [hep-th]. [36] Tsutomu Kobayashi, Masahide Yamaguchi, and Jun’ichi Yokoyama. “Generalized G-inflation: Inflation with the most general second- order field equations.” In: Prog. Theor. Phys. 126 (2011), pp. 511– 529. doi: 10.1143/PTP.126.511. arXiv: 1105.5723 [hep-th]. [37] M. Ostrogradsky. “Mémoires sur les équations différentielles, relatives au problème des isopérimètres.” In: Mem. Acad. St. Petersbourg 6.4 (1850), pp. 385–517. [38] Jérôme Gleyzes, David Langlois, Federico Piazza, and Filippo Vernizzi. “Exploring gravitational theories beyond Horndeski.” In: JCAP 1502 (2015), p. 018. doi: 10.1088/1475-7516/2015/02/ 018. arXiv: 1408.1952 [astro-ph.CO]. 156 bibliography [39] Jèrome Gleyzes, David Langlois, Federico Piazza, and Filippo Vernizzi. “Healthy theories beyond Horndeski.” In: Phys. Rev. Lett. 114.21 (2015), p. 211101. doi: 10.1103/PhysRevLett.114. 211101. arXiv: 1404.6495 [hep-th]. [40] David Langlois and Karim Noui. “Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski insta- bility.” In: JCAP 1602.02 (2016), p. 034. doi: 10 . 1088 / 1475 - 7516/2016/02/034. arXiv: 1510.06930 [gr-qc]. [41] David Langlois and Karim Noui. “Hamiltonian analysis of higher derivative scalar-tensor theories.” In: JCAP 1607.07 (2016), p. 016. doi: 10.1088/1475- 7516/2016/07/016. arXiv: 1512. 06820 [gr-qc]. [42] Giulia Gubitosi, Federico Piazza, and Filippo Vernizzi. “The Effective Field Theory of Dark Energy.” In: JCAP 1302 (2013). [JCAP1302,032(2013)], p. 032. doi: 10.1088/1475-7516/2013/ 02/032. arXiv: 1210.0201 [hep-th]. [43] Jolyon K. Bloomfield, Éanna É. Flanagan, Minjoon Park, and Scott Watson. “Dark energy or modified gravity? An effective field theory approach.” In: JCAP 1308 (2013), p. 010. doi: 10. 1088/1475-7516/2013/08/010. arXiv: 1211.7054 [astro-ph.CO]. [44] Jérôme Gleyzes, David Langlois, Federico Piazza, and Filippo Vernizzi. “Essential Building Blocks of Dark Energy.” In: JCAP 1308 (2013), p. 025. doi: 10 . 1088 / 1475 - 7516 / 2013 / 08 / 025. arXiv: 1304.4840 [hep-th]. [45] Jolyon Bloomfield. “A Simplified Approach to General Scalar- Tensor Theories.” In: JCAP 1312 (2013), p.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages31 Page
-
File Size-