Superconductivity, Superfluids, and Condensates 6

Superconductivity, Superfluids, and Condensates 6

OXFORD MASTER SERIES IN CONDENSED MATTER PHYSICS OXFORD MASTER SERIES IN PHYSICS The Oxford Master Series is designed for final-year undergraduate and beginning graduate students in physics and related disciplines. It has been driven by a perceived gap in the literature today. While basic undergraduate physics texts often show little or no connection with the huge explosion of research over the last two decades, more advanced and specialized texts tend to be rather daunting for students. In this series, all topics and their consequences are treated at a simple level, while pointers to recent developments are provided at various stages. The emphasis in on clear physical principles like symmetry, quantum mechanics, and electromagnetism which underlie the whole of physics. At the same time, the subjects are related to real measurements and to the experimental techniques and devices currently used by physicists in academe and industry. Books in this series are written as course books, and include ample tutorial material, examples, illustrations, revision points, and problem sets. They can likewise be used as preparation for students starting a doctorate in physics and related fields, or for recent graduates starting research in one of these fields in industry. CONDENSED MATTER PHYSICS 1.M. T. Dove: Structure and dynamics: an atomic view of materials 2. J. Singleton: Band theory and electronic properties of solids 3. A. M. Fox: Optical properties of solids 4. S. J. Blundell: Magnetism in condensed matter 5. J. F. Annett: Superconductivity, superfluids, and condensates 6. R. A. L. Jones: Soft condensed matter ATOMIC, OPTICAL, AND LASER PHYSICS 7. C. J. Foot: Atomic physics 8. G. A. Brooker: Modern classical optics 9. S. M. Hooker, C. E. Webb: Laser physics PARTICLE PHYSICS, ASTROPHYSICS, AND co5ividioGy 10. D. H. Perkins: Particle astrophysics 11.T. R Cheng: Relativity and cosmology A PL5 0,6 ob (7 iiperconductivity, Superfluids, and Condensates JAMES F. ANN ETT Department of Physics University of Bristol OXFORD UNIVERSITY PRESS OXFORD lJNIVERSITY PRESS Great Clarendon Street, Oxford 0X2 6DP Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Sao Paulo Shanghai Taipei Tokyo Toronto Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York © Oxford University Press 2004 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2004 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer A catalogue record for this title is available from the British Library Library of Congress Cataloging in Publication Data (Data available) ISBN 0 19 850755 0 (Hbk) ISBN 0 19 850756 9 (Pbk) 10 9 8 7 6 5 4 3 2 1 Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India Printed in Great Britain on acid-free paper by Antony Rowe, Chippenham, Wiltshire Preface Ever since their original discovery nearly 100 years ago, superconductors and superfluids have led to an incredible number of unexpected and surprising new phenomena. The theories which eventually explained superconductivity in met- als and superfluid 4He count among the greatest achievements in theoretical many-body physics, and have had profound implications in many other areas, such as in the construction of the "Higgs mechanism" and the standard model of particle physics. Even now there is no sign that the pace of progress is slowing down. Indeed recent years have seen renewed interest in the field in following the 1986 discov- ery of cuprate high temperature superconductivity and the 1995 announcement of Bose—Einstein condensation (BEC) in ultra-cold atomic gases. These break- throughs have tremendously widened the scope of the area of "low temperature physics" from 165 K (only about —100°C, a cold day at the North Pole) the highest confirmed superconducting transition temperature ever recorded, to the realm of nano-Kelvin in laser trapped condensates of atomic gases. Further- more an incredibly wide range of materials is now known to be superconducting. The field is no longer confined to the study of the metallic elements and their alloys, but now includes the study of complex oxides, carbon-based materials (such as fullerene C60), organic conductors, rare earth based compounds (heavy fermion materials), and materials based on sulphur and boron (MgB2 supercon- ductivity was discovered in 2001). Commercial applications of superconducting technology are also increasing, albeit slowly. The LHC ring currently (in 2003) being installed at the CERN particle physics center is possible only because of considerable recent advances in superconducting magnet technology. But even this uses "traditional" superconducting materials. In principle, even more powerful magnets could be built using novel high temperature superconducting materials, although these materials are difficult to work with and there are many technical problems still to be overcome. The goal of this book is to provide a clear and concise first introduction to this subject. It is primarily intended for use by final year undergraduates and beginning postgraduates, whether in physics, chemistry, or materials sci- ence departments. Hopefully experienced scientists and others will also find it interesting and useful. For the student, the concepts involved in superfluidity and superconductivity can be difficult subject to master. It requires the use of many different elements from thermodynamics, electromagnetism, quantum mechanics, and solid state physics. Theories of superconductivity, such as the Bardeen Cooper Schrieffer (BCS) theory, are also most naturally written in the mathematics of quantum field theory, a subject which is well beyond the usual undergraduate physics curriculum. This book attempts to minimize the use of these advanced math- ematical techniques so as to make the subject more accessible to beginners. vi Preface Of course, those intending to study superconductivity at a more advanced level will need to go on to the more advanced books. But I believe most of the key concepts are fully understandable using standard undergraduate level quan- tum mechanics, statistical physics, and some solid state physics. Among the other books in the Oxford Master Series in Condensed Matter, the vol- umes Band theory and electronic properties of solids by John Singleton (2001), and Magnetism in condensed matter by Stephen Blundell (2001) contain the most relevant background material. This book assumes an initial knowledge of solid state physics at this level, and builds upon this (or equivalent level) foundation. Of course, there are also many other books about superconductivity and superfluids. Indeed each chapter of this book contains suggestions for further reading and references to some of the excellent books and review articles that have been written about superconductivity. However, unlike many of these earl- ier books, this book is not intended to be a fully comprehensive reference, but merely an introduction. Also, by combinining superconductivity, superfluids and BEC within a single text, it is hoped to emphasize the many strong links and similarities between these very different physical systems. Modem topics, such as unconventional superconductivity, are also essential for students studying superconductivity nowadays and are introduced in this book. The basic framework of the earlier chapters derives from lecture courses I have given in Bristol and at a number of summer and winter schools elsewhere over the past few years. The first three chapters introduce the key experimen- tal facts and the basic theoretical framework. First, Chapter 1 introduces BEC and its experimental realization in ultra-cold atomic gases. The next chap- ter introduces superfluid 4He and Chapter 3 discusses the basic phenomena of superconductivity. These chapters can be understood by anyone with a basic understanding of undergraduate solid state physics, quantum mechan- ics, electromagnetism, and thermodynamics. Chapter 4 develops the theory of superconductivity using the phenomenological Ginzburg—Landau theory devel- oped by the Landau school in Moscow during the 1950s. This theory is still very useful today, since it is mathematically elegant and can describe many complex phenomena (such as the Abrikosov vortex lattice) within a simple and powerful framework. The next two chapters introduce the BCS theory of superconductivity. In order to keep the level accessible to undergraduates I have attempted to minimize the use of the mathematical machinery of quantum field theory, although inevitably some key concepts, such as Feynman dia- grams, are

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    201 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us