
<p>MOLECULAR STUDIES AND PHYLOGENY </p><p>14 </p><p><strong>6. Molecular studies and phylogeny </strong></p><p>Previous molecular studies employing rDNA ITS sequence data (CROUS et al. 2001) have shown cladosporium-like taxa to cluster adjacent to the main monophyletic <em>Myco- sphaerella </em>clade, suggesting a position apart of the latter genus. Comprehensive ITS (ITS- 1, 5.8S, ITS-2) and 18S rRNA sequence analyses carried out by BRAUN et al. (2003) provided further evidence for the separation of <em>Cladosporium </em>s. str. In the latter paper, results of molecular examinations published by other authors were summarised and phylograms of cladosporium-like fungi were discussed in detail. Human-pathogenic cladophialophora-like hyphomycetes (Herpotrichiellaceae), <em>Sorocybe resinae </em>(Fr.) Fr. </p><p>(<em>Amorphotheca resinae </em>Parbery) (Amorphothecaceae), <em>Alternaria malorum </em>(Rühle) U. </p><p>Braun, Crous & Dugan (<em>Cladosporium malorum </em>Rühle) (Pleosporaceae) and cladosporioid <em>Venturia </em>anamorphs (<em>Fusicladium</em>) (Venturiaceae) formed separate monophyletic clades and could be excluded from <em>Cladosporium </em>s. str. Within a big clade formed by members of the Mycosphaerellaceae, true <em>Cladosporium </em>species were shown to represent a sister clade to <em>Mycosphaerella </em>with cercosporoid anamorphs. The new teleomorph genus <em>Davidiella </em>was proposed to accommodate the teleomorphs of <em>Cladosporium </em>formerly placed in <em>Mycosphaerella </em>s. lat. It could be demonstrated that relatively minor differences in the conidiogenous loci and conidial hila support the different phylogenetic affinities. SEIFERT et al. (2004) used morphological characters, ecological features and DNA sequence data to characterise <em>Cladosporium staurophorum </em>taxonomically and phylogenetically and assigned it to the new genus <em>Devriesia</em>. Together with three additional heatresistant species, <em>C. staurophorum </em>formed a monophyletic group, with marginal position in the Mycosphaerellaceae, but clearly distinct from <em>Cladosporium </em>s. str. The new hyphomycetous genus <em>Metulocladosporiella</em>, an additional segregate of <em>Cladosporium </em>s. lat., has recently been introduced to accommodate <em>Cladosporium musae</em>, the causal agent of <em>Cladosporium </em>speckle disease of banana (CROUS et al. 2005). DNA sequence data derived from the ITS and LSU gene regions of <em>C. musae </em>isolates showed that this species is part of a large group of hyphomycetes in the <em>Chaetothyriales </em>with dematiaceous blastoconidia in acropetal chains. <em>Cladosporium adianticola </em>R.F. Castañeda, a foliicolous hyphomycete known from leaf litter in Cuba, proved to be also a member of this clade and closely </p><p>related to <em>C. musae</em>. </p><p>WIRSEL et al. (2002) and PARK et al. (2004) carried out phylogenetic studies within <em>Cladosporium </em>s. str. WIRSEL et al. (2002) analysed ITS data of strains isolated from common reed in Germany, compared them with sequences from GenBank and cultures from the CBS (Utrecht, the Netherlands), and distinguished three species, viz., </p><p><em>Cladosporium herbarum</em>, <em>C. oxysporum </em>and <em>Cladosporium </em>sp. Beside ITS sequences, they </p><p>generated two additional phylogenies, viz., analyses based on the differentiation of the fungi by their capacity to metabolize different carbon sources and a second approach, using actin gene sequences, in which they discovered a highly variable intron sequence. Species phylogenies based on this protein-encoding gene exhibited higher resolution compared with the ITS tree leading to further differentiation in terminal branches. Furthermore, it could be shown that all strains with smooth conidial surfaces clustered together, as did all isolates with rough-walled conidia, thus reflecting a possible division among plantassociated Cladosporia based on conidial ornamentation. However, due to the limited dataset, including only few <em>Cladosporium </em>species, a final conclusion could not be drawn. In the study carried out by PARK et al. (2004), the sequences of the D1/D2 regions of the LSU rDNA genes and the ITS regions of the rDNA were employed in order to establish molecular standards for the demarcation of the common airborne species <em>C. herbarum</em>, <em>C. </em></p><p><em>cladosporioides </em>and <em>C. sphaerospermum</em>. </p><p>MOLECULAR STUDIES AND PHYLOGENY </p><p>15 <br>The two neighbour-joining analyses of ITS datasets of the <em>Cladosporium </em>s. lat. complex presented within this work have been carried out at the CBS and kindly provided by Ewald Groenewald. The first phylogram (Fig. 1) contains isolates from five main groups [Pleosporaceae, Herpotrichiellaceae, Mycosphaerellaceae, Venturiaceae and the species </p><p>complex of <em>Cladosporium paeoniae </em>Pass. / <em>C. chlorocephalum </em>(Fresen.) E.W. Mason & </p><p>M.B. Ellis]. The Pleosporaceae form a well-supported clade (100 % bootstrap support) containing isolates of species of the genera <em>Alternaria </em>Nees and <em>Lewia </em>M.E. Barr & E.G. Simmons. The Herpotrichiellaceae are separated into two groups, the first consists of a clade supported by a bootstrap support value of 100 % comprising species of <em>Cladophialophora </em>and <em>Phialophora </em>Medlar, and the second well-supported clade contains </p><p>strains of <em>Cladosporium adianticola </em>(99 % bootstrap support), <em>Metulocladosporiella </em></p><p><em>musicola </em>Crous, Schroers & Groenewald (91 % bootstrap support) and <em>Metuloclado- sporiella musae </em>(E.W. Mason) Crous, Schroers, Groenewald, U. Braun & K. Schub. (99 % bootstrap support). Within the Mycosphaerellaceae cluster, a strongly supported <em>Davidiella </em>clade (100 %) containing <em>Cladosporium </em>anamorphs is formed. A clade for the Venturiaceae is also well supported containing species of <em>Venturia </em>as well as isolates of </p><p><em>Fusicladium </em>and <em>Pseudocladosporium hachijoensis </em>(Matsush.) U. Braun. <em>Cladosporium </em></p><p><em>paeoniae </em>and <em>C. chlorocephalum </em>cluster closely together with a bootstrap support value of 100 %, but grouped outside of the <em>Davidiella</em>/<em>Cladosporium </em>clade (100 % bootstrap support). ITS sequences similar to those of the latter species could not be obtained by <a href="/goto?url=http://www.ncbi.nlm.nih.gov/BLAST/) (pers" target="_blank">BLAST-searches (www.ncbi.nlm.nih.gov/BLAST/) (pers. comm. with Ewald Groene- </a>wald), so the grouping with ‘<em>Trimmatostroma salinum</em>’ is only due to the limited dataset selected here. The second neighbour-joining tree contains isolates of the Mycosphaerellaceae and Amorphothecaceae. The Amorphothecaceae clade is well-supported with a bootstrap support value of 100 % and consists of <em>Amorphotheca resinae </em>and ‘<em>Cladosporium</em>’ <em>breviramosum</em>. The Mycosphaerellaceae clade consists of isolates of </p><p><em>Mycosphaerella</em>, a strongly supported clade (100 %) of <em>Devriesia </em>containing <em>Cladospo- </em></p><p><em>rium staurophorum </em>and a big monophyletic clade of <em>Davidiella </em>comprising numerous </p><p><em>Cladosporium </em>species. </p><p>The phylograms derived in the present study reflect and support the results of previous phylogenic studies published by BRAUN et al. (2003), SEIFERT et al. (2004) and CROUS et al. (2005) in which several clades (genera, families) with cladosporium-like taxa are clearly delineated from <em>Cladosporium </em>s. str. Furthermore, it could be demonstrated that <em>C. </em></p><p><em>paeoniae </em>and <em>C. chlorocephalum </em>form a well-supported group outside of the <em>Davidiella </em>/ </p><p><em>Cladosporium </em>clade. This separate position could be confirmed by means of light and scanning electron microscopy showing the conidiogenous loci and hila to be different from those of <em>Cladosporium </em>s. str. in being non-coronate (see Fig. 113 and Pl. 34, Figs B, C, E, F). Although both species are morphologically and ecologically quite distinct, ITS sequence data of both species proved to be completely identical, which led to the conclusion that the latter species represent two stages of the same fungus (synanamorphs). However, the taxonomic affinity of both species is not yet clear. Further critical studies are required, in which additional isolates and other genes are included. The independent and separate phylogenetic position of the genus <em>Cladosporium </em>in relation to <em>Mycosphaerella</em>, confirmed by morphotaxonomic and molecular studies, has been well established in literature. Isolates of <em>Davidiella </em>and <em>Cladosporium </em>s. str. consistently cluster together in ITS and LSU analyses, providing support for the monophyly of the anamorphic genus <em>Cladosporium </em>and the teleomorphic genus <em>Davidiella </em>(BRAUN et al. 2003). Within the big <em>Davidiella</em>/<em>Cladosporium </em>clade presented here (Fig. 2) three small subclades can be recognised, the first consisting of isolates of <em>Davidiella tassiana </em>(De Not.) Crous & U. </p><p>Braun and its anamorph <em>Cladosporium herbarum </em>[incl. var. <em>macrocarpum </em>(Preuss) </p><p>M.H.M. Ho & Dugan], the second containing two isolates of <em>C. cladosporioides</em>, and the </p><p>MOLECULAR STUDIES AND PHYLOGENY </p><p>16 third comprising isolates of <em>C. sphaerospermum</em>. Isolates derived from new collections of several species made during the course of the present studies, e.g., <em>C. phyllogenum </em>and <em>C. phyllophilum </em>McAlpine (= <em>C. exoasci </em>Lindau) cluster within this clade confirming their </p><p>correct placement in <em>Cladosporium</em>. <em>C. oncobae </em>also belongs in <em>Cladosporium </em>s. str. Since </p><p>the two cultures isolated by Frank Hill cluster at two different places within the monophyletic clade, these cultures have to be checked to clarify their identities since the inclusion of a contamination has to be taken into consideration. There are similar problems with several isolates of ‘<em>C. cladosporioides</em>’. However, it must clearly be stated that ITS data are often not sufficient to assess phylogenetic relationships, above all on subgeneric and species level. UNTEREINER (2000) stated that the lack of resolution in phylogenies inferred from rDNA sequence data, particularly at the level of species and genus, argues strongly in favour of the use of combined data sets including sequences from other regions of the nuclear ribosomal repeat or sequences from multiple loci. Analyses based on a single locus are often not sufficient to differentiate phenotypically clearly distinct species, as recently demonstrated by SAMSON et al. (2004) for species of <em>Penicillium </em>Link subgen. <em>Penicillium </em>analysed on the base of ß-tubulin sequences. Sequence data from the internal transcribed spacers (ITS 1, ITS 2) within the genus <em>Cladosporium </em>are very uniform showing little variation resulting in a barely resolved clade, so that final conclusions at subgeneric and species rank are not yet possible. Multilocal analyses of the genome, based on a larger number of isolates from different geographical regions are necessary to redefine species borders within </p><p><em>Cladosporium </em>(WIRSEL et al. 2002). </p><p>MOLECULAR STUDIES AND PHYLOGENY </p><p>17 </p><p><em>Phomopsis vaccinii </em><br><em>Alternaria conjuncta </em>AF392988 <em>Alternaria infectoria </em>Y17066 </p><p>100 </p><p><em>Lewia ethzedia </em>AF392987 <em>Lewia infectoria </em>CPC 4271AF397248 <em>Alternaria malorum </em>CPC 4572 </p><p>100 <br>100 </p><p><em>Alternaria malorum </em>CPC 4571 <em>Alternaria malorum </em>var. <em>polymorpha </em>CPC 4570 <br>‘<em>Cladosporium</em>’ <em>adianticola </em>CBS 735.87 </p><p>74 <br>100 </p><p><em>Metulocladosporiella musae </em>CBS 161.74 </p><p>100 </p><p><em>Metulocladosporiella musae </em>CBS 113863 <em>Metulocladosporiella musicola </em>CBS 113861 <em>Metulocladosporiella musicola </em>CBS 113860 </p><p>100 <br>100 </p><p><em>Metulocladosporiella musicola </em>CBS 113865 <em>Metulocladosporiella musicola </em>IMI327290 </p><p>96 <br>100 </p><p><em>Metulocladosporiella musicola </em>CBS 113862 <em>Metulocladosporiella musicola </em>CBS 113864 <br><em>Cladophialophora bantiana </em>AF131079 <em>Cladophialophora bantiana </em>AF397182 <em>Capronia semiimmersa </em>MUCL 39979 <em>Phialophora americana </em>U31838 </p><p>100 </p><ul style="display: flex;"><li style="flex:1">100 </li><li style="flex:1">90 </li></ul><p>100 </p><p><em>Phialophora verrucosa </em>AF397136 <em>Phialophora verrucosa </em>MUCL 15537 </p><p>80 <br>99 </p><p><em>Rhinocladiella compacta </em>AF397133 <em>Cladophialophora minourae </em>CBS 556.83 <em>Cladophialophora carrionii </em>CBS 160.54 <em>Cladophialophora carrionii </em>CBS 260.83 </p><p>100 </p><p><em>Cladosporium sphaerospermum </em>CPC 3686 <em>Davidiella tassiana </em>ATCC 11281 <em>Davidiella tassiana </em>ATCC 201094 </p><p>100 <br>100 </p><p><em>Cladosporium cladosporioides </em>CPC 5100 <em>Cladosporium cladosporioides </em>CPC 3683 </p><p>94 <br>100 </p><p>‘<em>Cladosporium paeoniae</em>’ CPC 11383 </p><p>100 </p><p>‘<em>Cladosporium chlorocephalum</em>’ CPC 11969 </p><p>100 </p><p><em>Trimmatostroma salinum </em>AJ238672 </p><p>100 </p><p><em>Trimmatostroma salinum </em>AJ238675 <em>Trimmatostroma salinum </em>AJ238676 <br><em>Venturia pyrina </em>AF065844 <em>Venturia cerasi </em>AF065847 </p><p>100 </p><p><em>Pseudocladosporium hachijoense </em>CPC 5391 <em>Venturia inaequalis </em>AF065837 <em>Venturia inaequalis </em>AF531078 <em>Fusicladium convolvulorum </em>CPC 3884 <em>Fusicladium effusum </em>AY251085 </p><p>100 <br>100 <br>0.1 substitutions per site </p><p><em>Fusicladium effusum </em>AF065850 <em>Fusicladium effusum </em>AF065851 <em>Fusicladium effusum </em>AY251084 </p><p>89 </p><p><strong>Fig. 1: </strong>Phylogram of neighbour joining tree obtained from ITS sequencing data using F84 substitution model. Bootstrap support values are shown at nodes. The GenBank sequence <em>Phomopsis vaccinii </em>AF317578 was used as outgroup. The subclade including species of <em>Davidiella </em>and <em>Cladosporium </em>is marked by coloration. </p><p>MOLECULAR STUDIES AND PHYLOGENY </p><p>18 </p><p><em>Phomopsis vaccinii </em><br><em>Amorphotheca resinae </em>ATCC 200942 <em>Cladosporium breviramosum </em>ATCC 64696 <em>Cladosporium breviramosum </em>ATCC 76215 <em>Hormoconis resinae </em>CBS 184.54 </p><p>100 <br>96 <br>64 </p><p><em>Amorphotheca resinae </em>CPC 3692 <em>Hormoconis resinae </em>CBS 183.54 <br><em>Mycosphaerella punctiformis </em>CBS 113265 <br><em>Passalora arachidicola </em>AF297224 </p><p>88 </p><p><em>Passalora bellynckii </em>AF222831 <em>Passalora dissiliens </em>AF222835 <em>Passalora vaginae </em>AF222832 </p><p>99 </p><p><em>Mycovellosiella vaginae </em>AF222832 <em>Passalora henningsii </em>AF284389 <em>Pseudocercospora kibouchiae </em>Hill 1061 <em>Mycosphaerella aurantia </em>AY509744 <em>Passalora fulva </em>AF393701 </p><p>89 <br>90 <br>73 <br>80 </p><p>100 </p><p><em>Passalora fulva </em>AY251069 <br><em>Devriesia thermodurans </em>S108 1 <em>Devriesia shelburnense </em>S54 1 </p><p></p><ul style="display: flex;"><li style="flex:1">63 </li><li style="flex:1">100 </li></ul><p></p><p><em>Devriesia acadiense </em>S101 1 </p><p>54 99 <br>100 </p><p><em>Devriesia staurophorum </em>CBS 374.81b <em>Devriesia staurophorum </em>CBS 375.81 <em>Cladosporium staurophorum </em>ATCC 200934 <em>Mycosphaerella tassiana </em>CPC 11600 <em>Mycosphaerella tassiana </em>CPC 11603 <em>Mycosphaerella tassiana </em>CPC 11601 <em>Mycosphaerella tassiana </em>CPC 11602 <em>Cladosporium herbarum </em>CBS 813.71 <em>Mycosphaerella tassiana </em>CPC 11604 <em>Cladosporium macrocarpum </em>CBS 175.62 <em>Cladosporium </em>sp. on <em>Corylus </em>CPC 11330 <em>Cladosporium colocasiae </em>CPC 4323 <em>Cladosporium cladosporioides </em>CBS </p><p>100 <br>89 </p><p>84 </p><p><em>Cladosporium cucumerinum </em>CBS 172.54 <em>Cladosporium vignae </em>CBS 121.25 <em>Cladosporium </em>sp. on <em>Lycopodium </em>CBS 114078 <em>Cladosporium cladosporioides </em>f. <em>pisicola </em>CBS 145.35 <em>Cladosporium </em>sp. 2 on <em>Oncoba </em>CPC 11664 <em>Cladosporium cucumerinum </em>CBS 173.54 </p><p>100 </p><p><em>Cladosporium cladosporioides </em>CPC 3682 <em>Cladosporium cladosporioides </em>CPC 3683 <br><em>Cladosporium tenuissimum </em>ATCC 38027 <em>Cladosporium uredinicola </em>CPC 5390 </p><p>70 </p><p><em>Cladosporium phyllophilum </em>CPC 11324 <em>Cladosporium phyllogenum </em>CPC 11327 <em>Cladosporium phyllophilum </em>CPC 11333 <em>Cladosporium </em>sp. 1 on <em>Oncoba </em>CPC 11663 </p><p>AY361988 <em>Cladosporium sphaerospermum </em>ATCC 12092 </p><p>0.1 substitutions per site </p><p><sup style="top: -0.01em;">100 </sup>AY361958 <em>Cladosporium sphaerospermum </em>ATCC 11289 <br>AJ244228 <em>Cladosporium sphaerospermum </em>CBS 122.47 </p><p><strong>Fig. 2: </strong>Phylogram of neighbour joining tree obtained from ITS sequencing data using F84 substitution model. Bootstrap support values are shown at nodes. The GenBank sequence <em>Phomopsis vaccinii </em>AF317578 was used as outgroup. The subclade including species of <em>Davidiella </em>and <em>Cladosporium </em>is marked by coloration. </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages5 Page
-
File Size-