Interlayer Expansion : Synthesis, Structure and Characterisation of Metal Intercalated Layered Silicates

Interlayer Expansion : Synthesis, Structure and Characterisation of Metal Intercalated Layered Silicates

Interlayer Expansion: Synthesis, Structure and Characterisation of Metal Intercalated Layered Silicates Dissertation submitted in partial fulfilment of the requirement for the degree Doctor rer. nat. (Ph. D.) at the Faculty of Geosciences at the Ruhr-University Bochum presented by Isabel Großkreuz Bochum, January 2020 1. Superviser: Prof. Dr. HERMANN GIES 2. Superviser: Prof. Dr.-Ing. GUNTHER EGGELER ❆❜❛❝ The layered silicate RUB-36 serves as an ideal precursor for the process of interlayer ex- pansion to create new crystalline, microporous framework materials. Here, the incor- poration of specific metal cations as linker sites is investigated and extended to cobalt (Co), titanium (Ti), vanadium (V) and zinc (Zn). In a hydrothermal reaction, Co-, Ti-, V- or Zn-acetylacetonate (acac) are added to the hydrous silicate precursor RUB-36 in a hydrous acidic suspension to obtain an interlayer expanded zeolite (IEZ). The introduced cations act as linker between the silicate layers of the starting material and yield new, three- dimensional metallosilicate framework structures with following trivial name and chemical denomination Co-IEZ-RUB-36 Si51.95Co0.05O88, Ti-IEZ-RUB-36 Si51.75Ti0.25O88, V-IEZ-RUB-36 Si51.88 V0.12O88 and Zn-IEZ-RUB-36 Si51.82Zn0.18O88. All four materials are stable upon calcination, which has been confirmed by ther- mal analyses (differential thermal analysis (DTA) and thermal gravimetry (TG)) and powder X-ray diffraction (PXRD). The new materials crystallise in the monoclinic space group (SG) Pm with lattice parameters a0 = 23.875(12) Å, b0 = 14.053(7) Å, c0 = 7.417(4) Å and β = 90.00(5)° for Co-, a0 = 24.207(59) Å, b0 = 14.002(33) Å, c0 = 7.398(14) Å and β = 89.91(28)° for Ti-, a0 = 23.782(25) Å, b0 = 14.024(7) Å, c0 = 7.404(4) Å and β = 90.08(9)° for V- and a0 = 23.782(16) Å, b0 = 14.056(9) Å, c0 = 7.421(4) Å and β = 89.98(4)° for Zn-material. All β-angles are 90° (orthorhombic unit cell (UC)/metric but monoclinic symmetry). Atomic structure and framework topology have been confirmed by PXRD RIETVELD anal- ysis and automated electron diffraction tomography (ADT), as well as nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. Chemical composition and incorpora- tion of cations were determined by energy-dispersive X-ray spectroscopy (EDX) and atomic V Abstract absorption spectroscopy (AAS) analysis. Preservation of microporous structure was tested by nitrogen gas (N2) adsorption. Selected materials have been studied for catalytic activity by ammonia (NH3)-temperature programmed desorption (TPD) and 1-octene cracking/isomerisation reaction. VI ❩✉❛♠♠❡♥❢❛✉♥❣ Das Schicht-Silikat RUB-36 ist ein ideales Ausgangsmaterial für den Prozess der Zwis- chenschicht Expansion um neue kristalline, mikroporöse Gerüstmaterialien herzustellen. Hier wird die Eingliederung von spezifischen Metall-Kationen als Verbindungsposition untersucht und auf Cobalt, Titan, Vanadium und Zink ausgedehnt. In einer hydrother- malen Reaktion wird Co-, Ti-, V- oder Zn-acac zum hydrierten Silikat Material RUB-36 in wässrig-saurer Suspension gegeben um einen Zwischenschicht expandierten Zeolith zu erhalten. Die aufgeführten Kationen dienen als Verbindungspositionen zwischen den Silikatschichten des Ausgansmaterials und ergeben neue, dreidimensionale Metallgerüst- silikate mit folgenden Trivialnamen und chemischer Bezeichnung Co-IEZ-RUB-36 Si51.95Co0.05O88, Ti-IEZ-RUB-36 Si51.75Ti0.25O88, V-IEZ-RUB-36 Si51.88 V0.12O88 und Zn-IEZ-RUB-36 Si51.82Zn0.18O88. Alle vier Materialien sind nach Kalzinierung stabil. Dies wurde mithilfe der thermischen Analyse (Differential Thermo Analyse (DTA) und Thermogravimetrie (TG)) und Pulverrönt- gendiffraktometrie (PXRD) geprüft. Die Syntheseprodukte kristallisieren in der monokli- nen Raumgruppe Pm mit Gitterparametern a0 = 23.875(12) Å, b0 = 14.053(7) Å, c0 = 7.417(4) Å und β = 90.00(5)° für Co-, a0 = 24.207(59) Å, b0 = 14.002(33) Å, c0 = 7.398(14) Å und β = 89.91(28)° für Ti-, a0 = 23.782(25) Å, b0 = 14.024(7) Å, c0 = 7.404(4) Å und β = 90.08(9)° für V- und a0 = 23.782(16) Å, b0 = 14.056(9) Å, c0 = 7.421(4) Å und β = 89.98(4)° für Zn-Material. Alle β-Winkel betragen 90° (orthorhombische Einheitszelle/Metrik mit monokliner Sym- metrie). Atomarer Aufbau und Gerüst-Topologie ließen sich durch PXRD RIETVELD Ver- feinerung und ADT Analyse, sowie NMR und IR Spektroskopie verifizieren. Der Einsatz von EDX und AAS Verfahren lieferte Informationen zu chemischer Zusammensetzung und Eingliederung der Kationen. Durch N2 Adsorption konnte ein Erhalt der mikroporösen Struktur getested werden. VII Abstract Eine Analyse hinsichtlich katalytischer Aktivität erfolgte für ausgewählte Materialien in NH3-TPD und 1-Octen Spaltung bzw. Isomerisierungsreaktion. VIII ❚❛❜❧❡ ♦❢ ❈♦♥❡♥ ❆❜❛❝ ❱■ ❩✉❛♠♠❡♥❢❛✉♥❣ ❱■■■ ❚❛❜❧❡ ♦❢ ❈♦♥❡♥ ❳■ ▲✐ ♦❢ ❛❜❜❡✈✐❛✐♦♥ ❳■■■ ✶✳ ■♥♦❞✉❝✐♦♥ ❛♥❞ ▼♦✐✈❛✐♦♥ ✶ ✷✳ ❈✉❡♥ ❛❡ ♦❢ ❡❡❛❝❤ ✾ 2.1. Zeolites .......................................... 9 2.1.1. Composition ................................... 13 2.1.2. Stability ...................................... 14 2.1.3. Functionality .................................. 14 2.2. Catalysis ......................................... 15 2.3. Interlayer Expansion and Topotactic Condensation . 22 2.4. Problem and objective of this work .......................... 26 ✸✳ ❍②❞♦❤❡♠❛❧ ②♥❤❡✐ ✷✾ 3.1. Hydrothermal zeolite genesis and synthesis .................... 32 3.2. Hydrothermal synthesis of RUB-36 hydrous layer silicate . 34 3.3. Post-synthesis treatment ................................ 36 3.3.1. Interlayer Expansion .............................. 36 3.3.2. Metal Interlayer Expansion .......................... 37 ✹✳ ❘❯❇✲✸✻ ❧❛②❡ ✐❧✐❝❛❡ ✹✶ 4.1. Structure and Properties ................................ 41 4.2. Framework type FER .................................. 41 4.2.1. fer-type layers .................................. 47 4.3. Framework type CDO ................................. 49 4.4. Crystallographic structure of RUB-36 ........................ 51 IX Table of Contents 4.5. Disorder of layer stacking ............................... 53 ✺✳ ❈❤❛❛❝❡✐❛✐♦♥ ♦❢ ②♥❤❡✐❡❞ ♣♦❞✉❝ ❛♥❞ ♠❡❤♦❞ ✺✾ 5.1. Powder X-ray diffraction (PXRD) ........................... 59 5.1.1. Basic principles of PXRD ............................ 61 5.1.2. Rietveld refinement .............................. 65 5.1.3. Program Suite FullProf ............................. 68 5.1.4. Analysis of polycrystalline material RUB-36 . 68 5.1.5. Analysis of Me-IEZ-RUB-36 .......................... 71 5.2. SEM and EDX ...................................... 81 5.2.1. Basic principles of SEM and EDX ....................... 81 5.2.2. SEM and EDX experiments .......................... 83 5.3. ADT ............................................ 86 5.3.1. Basic principles of ADT ............................ 86 5.3.2. ADT experiments ................................ 87 5.4. Inductively coupled plasma (ICP)-atomic absorption spectroscopy (AAS) . 90 5.4.1. Basic principles of ICP-AAS .......................... 91 5.4.2. ICP-AAS experiments ............................. 91 5.5. X-ray fluorescence (XRF) analysis .......................... 93 5.5.1. Basic principles of XRF ............................. 93 5.5.2. XRF experiments ................................ 94 5.6. Ammonia (NH3)-temperature programmed desorption (TPD) ......... 95 5.6.1. Basic principles of NH3-TPD ......................... 96 5.6.2. NH3-TPD experiments ............................. 97 5.7. Nitrogen gas (N2) adsorption ............................. 99 5.7.1. Basic principles of N2 adsorption ...................... 99 5.7.2. N2 adsorption experiments .......................... 101 5.8. Thermal analyses (TA) ................................. 105 5.8.1. Basic principles of TA ............................. 105 5.8.2. TA experiments ................................. 106 5.9. Nuclear magnetic resonance (NMR) spectroscopy . 108 5.9.1. Basic principles of NMR spectroscopy .................... 109 5.9.2. Experimental NMR spectroscopy ...................... 114 5.9.3. 29Si ZG and 29Si HP DEC ............................ 114 5.9.4. 13C CP MAS ................................... 118 5.9.5. 1H MAS ...................................... 119 X 5.10.Infrared (IR) spectroscopy ............................... 121 5.10.1. Basic principles of IR spectroscopy ..................... 122 5.10.2. IR spectroscopy experiments ......................... 124 5.11.Ultraviolet (UV) - visible (vis) spectroscopy ..................... 127 5.11.1. Basic principles of UV-vis spectroscopy ................... 128 5.11.2. UV-vis spectroscopy experiments ...................... 130 ✻✳ ❈❛❛❧②✐❝ ❡①♣❡✐♠❡♥ ✶✸✺ 6.1. Epoxidation of 1-hexene ................................ 135 6.1.1. Theory ...................................... 136 6.1.2. Experiment ................................... 138 6.2. Catalytic cracking and isomerisation of 1-octene . 140 6.2.1. Theory ...................................... 140 6.2.2. Experiment ................................... 141 6.2.3. Material Analyses ................................ 146 ✼✳ ❙✉♠♠❛② ❛♥❞ ❖✉❧♦♦❦ ✶✹✾ ❆♣♣❡♥❞✐① ✶✺✾ A. List of Figures ...................................... 159 B. List of Tables ....................................... 162 C. List of crystallographic symbols ........................... 163 D. Detailed Synthesis protocol .............................. 164 E. List of atomic positions ................................ 170 F. Curriculum Vitae .................................... 183 G. Declaration in lieu of oath ............................... 184 H. Digital Appendage ..................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    224 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us