(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 10 February 2011 (10.02.2011) WO 2011/017137 A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61K 48/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US2010/043458 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 28 July 2010 (28.07.2010) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/230,9 11 3 August 2009 (03.08.2009) US GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): ALNY- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, LAM PHARMACEUTICALS, INC. [US/US]; 300 EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Third Street, Third Floor, Cambridge, Massachusetts LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, 02142 (US). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). (72) Inventors; and (75) Inventors/Applicants (for US only): WARD, Donna Declarations under Rule 4.17: [US/US]; c/o Alnylam Pharmaceuticals, Inc., 300 Third — as to applicant's entitlement to apply for and be granted Street, Third Floor, Cambridge, Massachusetts 02142 a patent (Rule 4.1 7(U)) (US). RHODES, Jason [US/US]; c/o Alnylam Pharma ceuticals, Inc., 300 Third Street, Third Floor, Cambridge, — as to the applicant's entitlement to claim the priority of Massachusetts 02142 (US). the earlier application (Rule 4.1 7(Hi)) (74) Agents: RESNICK, David et al; Nixon Peabody LLP, Published: 100 Summer Street, Boston, Massachusetts 021 10 (US). — without international search report and to be republished (81) Designated States (unless otherwise indicated, for every upon receipt of that report (Rule 48.2(g)) kind of national protection available): AE, AG, AL, AM, (54) Title: METHODS AND COMPOSITIONS FOR TREATING INSECTS (57) Abstract: Provided herein are methods and compositions for modulating gene expression in insects by administering a com position comprising an RNA effector molecule and a delivery agent. Methods are provided for controlling pest populations by in hibiting insect growth, development, survival, reproduction and/or viability. Also provided herein are methods for treating or pre venting disease in an insect caused by a pathogen or by external factors (e.g., pollution, environment, stress, weather, etc.). METHODS AND COMPOSITIONS FOR TREATING INSECTS CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Provisional Application Number 61/230,911 filed on August 3, 2009, the contents of which are incorporated herein by reference in their entirety. FIELD OF THE INVENTION [0002] The field of the invention relates to the treatment of insects with a composition comprising an RNA effector molecule. BACKGROUND [0003] Pests including insects, arachnids, crustaceans, fungi, bacteria, viruses, nematodes, flatworms, roundworms, pinworms, hookworms, tapeworms, trypanosomes, schistosomes, botflies, fleas, ticks, mites, lice and the like are pervasive in the human environment, and a multitude of means have been utilized for attempting to control infestations by these pests. Compositions for controlling infestations by microscopic pests such as bacteria, fungi, and viruses have been provided in the form of antibiotic compositions, antiviral compositions, and antifungal compositions. Compositions for controlling infestations by larger pests such as nematodes, flatworm, roundworms, pinworms, heartworms, tapeworms, trypanosomes, schistosomes, and the like have typically been in the form of chemical compositions which can either be applied to the surfaces of substrates on which pests are known to infest, or to be ingested by an infested animal in the form of pellets, powders, tablets, pastes, or capsules and the like. SUMMARY OF THE INVENTION [0004] Described herein are compositions comprising an RNA effector molecule and methods for administering such compositions to an insect or group of insects, wherein the RNA effector molecule modulates gene expression. The compositions are useful for controlling insect pest populations by inhibiting survival, viability, reproductions, growth and/or development of a pest population. Alternatively, the compositions are useful for treating or preventing a disease, including, but not limited to, pathogen-borne disease or disease caused by environmental factors (e.g., pollution, agricultural chemicals), in insects having a beneficial function by modulating gene expression of the pathogen or of the insect. [0005] One aspect described herein relates to a method for modulating gene expression in an insect, the method comprising: administering to the insect a composition comprising an RNA effector molecule or a vector encoding an RNA effector molecule, and a delivery agent, wherein the RNA effector molecule modulates gene expression in the insect. [0006] Another aspect described herein relates to a method for treating or preventing disease in an insect, the method comprising administering to the insect a composition comprising an RNA effector molecule or a vector encoding an RNA effector molecule, and a delivery agent, wherein the RNA effector molecule modulates gene expression of an insect or insect pathogen. [0007] As used herein, an "RNA effector molecule" refers to a molecule that modulates the expression of a gene. In certain embodiments, the RNA effector molecule is an oligonucleotide. As used herein, the oligonucleotide can comprise an RNA interference agent, an RNA activator, an miRNA, an shRNA, a ribozyme, an antisense RNA, a decoy oligonucleotide, an antimir, or a supermir. [0008] As used herein, the terms "RNA interference agent," "RNAi" or "iRNA" refer to an oligonucleotide as that term is defined herein, and which mediates the targeted cleavage of an RNA transcript via an RNA-induced silencing complex (RISC) pathway. [0009] The iRNAs included in the compositions featured herein encompass a dsRNA having an RNA strand (the antisense strand) having a region that is typically 9-36 nucleotides in length, e.g., 30 nucleotides or less, generally 19-24 nucleotides in length, that is substantially complementary to at least part of an mRNA transcript of an insect pest or an insect pathogen. [0010] In one embodiment, an iRNA for modulating expression of an insect or insect pathogen gene includes at least two sequences that are complementary to each other. The iRNA includes a sense strand having a first sequence and an antisense strand having a second sequence. The antisense strand includes a nucleotide sequence that is substantially complementary to at least part of an mRNA of a target gene, and the region of complementarity is 30 nucleotides or less, and at least 15 nucleotides in length. Generally, the iRNA is 19 to 24, e.g., 19 to 2 1 nucleotides in length. In some embodiments the iRNA is from about 15 to about 25 nucleotides in length, and in other embodiments the iRNA is from about 25 to about 30 nucleotides in length. In another embodiment of this aspect, the oligonucleotide comprises 9-36 base pairs. [0011] The iRNA, upon contacting with an insect or insect pathogen, inhibits the expression of a target gene by at least 10%, at least 20%, at least 25%, at least 30%, at least 35% or at least 40% or more. In one embodiment, the iRNA is formulated in a stable nucleic acid lipid particle (SNALP). [0012] In another embodiment of this aspect, the oligonucleotide is a single stranded or double stranded oligonucleotide. [0013] In another embodiment of this aspect, the oligonucleotide is modified. The oligonucleotide molecules featured herein can include naturally occurring nucleotides or can include at least one modified nucleotide, including, but not limited to a 2'-O-methyl modified nucleotide, a nucleotide having a 5'-phosphorothioate group, and a terminal nucleotide linked to a cholesteryl derivative. Alternatively, the modified nucleotide can be chosen from the group of: a 2'-deoxy-2'-fluoro modified nucleotide, a 2'-deoxy-modified nucleotide, a locked nucleotide, an abasic nucleotide, 2'-amino-modified nucleotide, 2'-alkyl-modified nucleotide, morpholino nucleotide, a phosphoramidate, and a non-natural base comprising nucleotide. [0014] In one aspect, the invention provides a vector for inhibiting the expression of a insect or insect pathogen gene. In one embodiment, the vector includes at least one regulatory sequence operably linked to a nucleotide sequence that encodes at least one strand of an iRNA featured in the invention. [0015] In one embodiment of these aspects, the disease is caused by an insect pathogen selected from the group consisting of a virus, mite, nematode, bacteria, fungus, or parasite. Alternatively, the disease can be caused by external factors including, but not limited to, pollution, exposure to electromagnetic radiation, exposure to pesticides, environment, or stress. [0016] In one embodiment of this aspect, the insect is a pest. Alternatively, the insect comprises a beneficial insect such as e.g., a bee, wasp, butterfly, ant or ladybug. [0017] In another embodiment of the aspects described herein, the RNA effector molecule inhibits or activates gene expression. [0018] In another embodiment of the aspects described herein, the modulation of gene expression inhibits viability, survival, growth, development, and/or reproduction of the insect.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages134 Page
-
File Size-