Solar Convection & Magnetism

Solar Convection & Magnetism

IMPRSIMPRS IntroIntro CourseCourse Germerode,Germerode, 19.2.200219.2.2002 SSoollaarr CCoonnvveeccttiioonn && MMaaggnneettiissmm ManfredManfred SchüsslerSchüssler Max-Planck-InstitutMax-Planck-Institut fürfür AeronomieAeronomie Katlenburg-LindauKatlenburg-Lindau ConvectionConvection && magnetism:magnetism: closelyclosely relatedrelated TThhee ssoollaarr ccoonnvveeccttiioonn zzoonnee n 200200 MmMm thickthick layerlayer inin turbulentturbulent motionmotion n VelocitiesVelocities rangerange fromfrom 100100 m/sm/s (bottom)(bottom) toto 1010 km/skm/s (top)(top) n EnergyEnergy fluxflux nearlynearly completelycompletely transportedtransported byby convectiveconvective motionmotion WWhhaatt iiss ccoonnvveeccttiioonn?? n FlowFlow drivendriven byby thermalthermal buoyancybuoyancy n ConvectiveConvective instabilityinstability è Viewgraphs... WHAT IS CONVECTION ? ² Transport of energy (internal, kinetic, latent, ...) by macroscopic motions (flows) driven by dynamical instability of a static equi- librium ² ... driven by an entropy gradient in thermodynamically open system ² Examples : air above a “radiator”, earth’s troposphere, stellar convection zones ² Convective motions normally are overturning ($ oscillatory) ² treat solar atmospheric flow structures as “convective” in spite of stable stratification of observable layers (“overshoot”) ² “Sun as a Lab”: Concentrate on solar convection zone (! huge Reynolds number Re = ul=º, small Prandtl number σ = º=·, strong stratification, pressure fluctuations important ! labora- tory convection results inapplicable) ² Not discussed here, but important : Effects of/on rotation, os- cillations, heating of upper atmosphere CONVECTION IN ASTROPHYSICS ! everybody’s darling/problem ² Basic energy transport mechanism, besides radiation ² Leads to strong structuring of late type star surface regions (! 1D-models inadequate) which affects the determination of atmospheric structure and abundances of elements ² Generates large-scale magnetic fields (dynamo) and small- scale magnetic structures (flux tubes) ² Provides mechanical energy for heating of chromospheres and coronae, drives stellar winds/mass loss ² Drives global oscillations ² Generates differential rotation ² Causes mixing and disturbs stellar evolution ² Is everywhere: ) envelopes of late-type stars ) cores of early-type stars ) accretion disks ) planetary interiors and atmospheres ² Solar atmosphere is a unique testing ground for understanding stellar convection : Processes can be observed on their natural time scales and length scales LaboratoryLaboratory resultsresults andand numericalnumerical experimentsexperiments forfor Rayleigh-BénardRayleigh-Bénard convectionconvection withwith highhigh RaRa 17 n lab:lab: RaRa upup toto 1010 (Helium(Helium gasgas atat ~5~5 K)K) 5 1/3 n RaRa >> 2.52.5 1010 :: turbulence,turbulence, NuNu ~~ RaRa 7 2/7 n RaRa >> 44 1010 :: “hard“hard turbulence”,turbulence”, NuNu ~~ RaRa n coherentcoherent threads/plumes/thermalsthreads/plumes/thermals ofof buoyantbuoyant fluidfluid connectconnect toptop && bottombottom n flowsflows drivendriven byby threads,threads, passivepassive non-buoyantnon-buoyant fluidfluid betweenbetween n non-localnon-local energyenergy transport,transport, globalglobal circulationcirculation n withwith rotation:rotation: vortexvortex interactioninteraction ofof plumes,plumes, coalescencecoalescence n SolarSolar convectionconvection stronglystrongly differentdifferent fromfrom Rayleigh-Bénard:Rayleigh-Bénard: boundaryboundary structure,structure, stratification,stratification, compressibility...compressibility... FilamentaryFilamentary flowsflows inin Rayleigh-BénardRayleigh-Bénard convectionconvection Kerr 1996 TimeTime evolutionevolution ofof filamentaryfilamentary flowsflows inin Rayleigh-BénardRayleigh-Bénard convectionconvection Kerr 1996 SOLAR CONVECTION : OBSERVATIONAL APPROACHES Continuum images, filtergrams ) spatial structure : bright granules & interconnected network of dark intergranular lanes ) temporal evolution : formation, dissolution, break-up of gran- ules, “exploding granules” Spectrograms ) line-of-sight velocities via Doppler effect (“line wiggles”) ) upflow in granules, downflow in intergranular lanes ) velocity distributions & gradients (line asymmetries) ) supergranulation (Dopplergrams) Proper motions of “tracers” ) horizontal velocities ) mesogranulation by “local correlation tracking” GGrraannuullaattiioonn:: SSoollaarr ssuurrffaaccee ccoonnvveeccttiioonn SSoollaarr ggrraannuullaattiioonn GGrraannuullaattiioonn uunndd llaabboorraattoorryy ccoonnvveeccttiioonn GranulationGranulation asas aa convectiveconvective phenomenonphenomenon SSuuppeerrggrraannuullaattiioonn SSuuppeerrggrraannuullaattiioonn aanndd mmaaggnneettiicc ffiieelldd:: tthhee CCaa++ nneettwwoorrkk GGrraannuullaattiioonn,, ssuunnssppoottss,, && ssmmaallll--ssccaallee mmaaggnneettiicc ffiieelldd ““MMeessooggrraannuullaattiioonn”” ?? 6. Numerical Simulations Solar convection, in particular near the surface, is unsufficiently de- scribed by concepts like mixing length, linear superposition of eigen- modes, Boussinesq approximation, etc. because of ! strong density stratification, ! nonlinearity of the flows, ! non-stationarity, ! compressibility effects, shocks. ) Numerical simulations Equations and problems Continuity: @½ = ¡r ¢ (½ u) @t ) compressibility, strong stratification Equation of motion: 0@ u 1 1 ½ @ + u ¢ r uA = ¡rp + ½ g + (r £ B) £ B + f @t 4¼ visc ) Re = u ¢ l=º À 1 ! small scales ! “sub-grid” transport coefficients (viscosity, thermal & magnetic diffu- sion) ) steep gradients, concentrated flows Energy equation: @T T γ +u¢rT = ¡ (γ¡1)r¢u¡ r¢(Frad+Fvisc+Fmag +Fturb) @t Âp ½cp ) partial ionization effects ! thermodynamical quantities must be determined self-consistently ) surface layers ! radiation has to be treated accurately, radiative energy loss to space drives the whole flow ! solve transfer equation, preferably non-grey (opacity distri- bution functions) Magnetic induction equation @B = r £ (u £ B) ¡ r £ (´ r £ B) @t m ) steep gradients, concentrated fields & currents ) “sub-grid” magnetic diffusivity in addition... ! equation of state, ! equations for ionization equilibrium, ! equations for thermodynamic quantities (Âp; γ; cp; ...) ! determination of opacities, ! integration of radiative transfer equation along many lines of sight for many angles, calculation of mean intensity and radiative flux ! determination of diagnostic information (mean quantities, cor- relations, single and average spectral line profiles, continuum intensity maps...) ! visualization of flow properties and time evolution ! ... ² Boundary problems Real boundaries: ! top : ¿ = 1, radiation, steep T -gradient ! bottom : overshoot, thermal boundary layer Artificial boundaries: ! transmitting, non-reflecting, open Initial conditions: ! simulation time > thermal relaxation time ² Approaches Numerical experiments ! simplified physics, consider general properties without attempt- ing to model the Sun ! Graham (1975, 1977), Hurlburt et al, (1984, 1986), Chan & Sofia (1986, 1987), Hossain & Mullan (1990), Malagoli et al. (1990), Cattaneo et al. (1991) Global convection ! simulate bulk of solar convection zone, neglect surface regions, trade resolution for total size ! Gilman & Glatzmaier (1981,...) Surface convection ! simulate observable solar convection on granular/mesogranular scale ! Nordlund (1984,...), Gadun (1986), Stein & Nord- lund (1989), Steffen (1989) ² Results : Simulation of convection ! Strong inhomogeneities, steep gradients (temperature, velocity) ! Significant pressure fluctuations, “buoyancy braking” ! Supersonic velocities, shocks ! Asymmetry of up- and downflows, non-local dynamics ) strong, narrow downflows $ broad upflows ) 3D, turbulent: Coherent pattern of downdrafts, disor- ganized upflows ) topology changes with depth ! “granulation” is a shallow phenomenon ! Downdrafts play a prominent role: ) sites of buoyancy driving ) kinetic energy flux ) helical motion due to “bathtub effect” ! Other transport processes strongly non-local (magnetic fields, angular momentum...) ! Essential features of observed granulation are reproduced by simulations with radiative transport: ) isolated, hot upflows – network of cool downflows ) timescales, spatial scales, “exploding granules” ) average line profiles CCoommppuutteerr--ssiimmuullaatteedd ccoonnvveeccttiioonn •• BoussinesqBoussinesq modelmodel •• RayleighRayleigh number:number: 55 10105 •• 3D,3D, 512512´´512512´´9797 meshmesh •• widewide box,box, aspectaspect ratio:ratio: 1010 •• “(meso)granulation”“(meso)granulation” Cattaneo & Emonet (2001) CCoommppuutteerr--ssiimmuullaatteedd ccoonnvveeccttiioonn •• BoussinesqBoussinesq modelmodel •• RayleighRayleigh number:number: 55 10105 •• 3D,3D, 512512´´512512´´9797 meshmesh •• widewide box,box, aspectaspect ratio:ratio: 1010 •• “(meso)granulation”“(meso)granulation” Cattaneo & Emonet (2001) Temperature fluctuations SimulatedSimulated long-livedlong-lived convectiveconvective downflowsdownflows Virtual “corks” are carried by the horizontal flow. They accumulate in downflow regions. ‘‘RReeaalliissttiicc’’ ssoollaarr ssiimmuullaattiioonnss n elaborateelaborate physics:physics: partialpartial ionization,ionization, radiation,radiation, compressible,compressible, openopen box,box, transmittingtransmitting boundaries,boundaries, spectralspectral lineline diagnosticsdiagnostics (Stokes(Stokes profiles)profiles) n ++ :: approximationapproximation toto solarsolar conditionsconditions n ++ :: directdirect comparisoncomparison withwith observationobservationss n -- :: computationalcomputational

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    49 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us