Development of Biomaterials from Renewable Resources

Development of Biomaterials from Renewable Resources

UNIVERSIDAD DE CASTILLA-LA MANCHA FACULTAD DE CIENCIAS Y TECNOLOGÍAS QUÍMICAS DEPARTAMENTO DE INGENIERÍA QUÍMICA TESIS DOCTORAL: DEVELOPMENT OF BIOMATERIALS FROM RENEWABLE RESOURCES Presentada por: JUAN CARLOS DE HARO SÁNCHEZ para optar al grado de doctor por la Universidad de Castilla-La Mancha Dirigida por: Dr. Ángel Pérez Martínez Dr. Manuel Salvador Carmona Franco Ciudad Real, 2018 Dr. Ángel Pérez Martínez Profesor titular de Universidad Departamento de Ingeniería Química Universidad de Castilla-La Mancha Y Dr. Manuel Salvador Carmona Franco Profesor titular de Universidad Departamento de Ingeniería Química Universidad de Castilla-La Mancha Certifican que: Juan Carlos de Haro Sánchez ha realizado bajo su dirección el trabajo titulado “Development of biobased materials from renewable resources” en el Departamento de Ingeniería Química de la Facultad de Ciencias y Tecnologías Químicas de la Universidad de Castilla-La Mancha, considerando que dicho trabajo reúne los requisitos para ser presentado como Tesis Doctoral, expresan su conformidad con dicha presentación. Ciudad Real, a 26 de septiembre de 2018 Dr. Ángel Pérez Martínez Dr. Manuel Salvador Carmona Franco AGRADECIMIENTOS En primer lugar, quiero expresar mi más sincero agradecimiento a mis directores de tesis, el Dr. Ángel Pérez y el Dr. Manuel Carmona. Sin su orientación científica y apoyo, esta investigación no podría haber sido completada con éxito. También me gustaría expresar especialmente mi gratitud al Dr. Juan Francisco Rodriguez, ya que sin su apoyo y confianza este trabajo no habría sido posible. Así mismo, mi agradecimiento se extiende a todos los miembros del Departamento de Ingeniería Química de la Universidad de Castilla-La Mancha y del Instituto de Tecnología Química y Medioambiental (ITQUIMA) por brindarme la oportunidad de comenzar mi carrera investigadora. My sincerest thanks to Dr. Gianmarco Griffini for the opportunity that he gave me to join the Laboratory of Chemistry and Characterization of Innovative Polymers at Politecnico di Milano and for the friendship of all the group members during my stay with them. También me gustaría agradecer al Ministerio de Educación, Cultura y Deporte la financiación de esta investigación mediante la beca para la Formación de Profesorado Universitario FPU014/00009. A todos los compañeros de viaje durante estos años, especialmente a los que han trascendido del ámbito laboral. Al Equipo Chapuzas™ y en general a todos los “Cheskytos” y “Cabesonsitos” oficiales o que se sientan de corazón, imprescindibles en las paradas técnicas en el camino de la investigación por haber conseguido que este trabajo haya sido realizado siempre con una sonrisa en la cara. A todos aquellos estudiantes que han tomado parte activa de esta investigación mediante la realización del Trabajo Fin de Grado o Trabajo Fin de Master, porque habéis compartido conmigo los momentos más complicados de la experimentación y me habéis brindado toda vuestra capacidad de trabajo. Finalmente, a mis seres queridos y amigos, por su apoyo, comprensión, paciencia y ánimo en los momentos difíciles, por creer en mí y estar siempre a mi lado. “We've arranged a global civilization in which most crucial elements profoundly depend on science and technology. We have also arranged things so that almost no one understands science and technology. This is a prescription for disaster. We might get away with it for a while, but sooner or later this combustible mixture of ignorance and power is going to blow up in our faces.” Carl Sagan Table of contents Summary / Resumen Chapter 1. Introduction………………………………………………………………………………………1 1.1. Environmental situation………………………………………………………………………...3 1.2. The concept of biorefinery and biomass resources………………………………….4 1.3. Derived products from vegetable oils…………………………………………………...16 Chapter 2. Motivation, objectives and work plan………………………………………………..37 Chapter 3. Materials and methods…………………………………………………………………….43 3.1. Materials………………………………………………………………………...............................45 3.2. The concept of biorefinery and biomass resources………………………………..47 3.3. Experimental procedures…………………………………………………...........................54 3.4. Characterization techniques………………………………………………………………...58 SECTION 1. ALTERNATIVE BIOBASED CHEMICAL PERCURSORS Chapter 4. Epoxidation of grape seed oil…………………………………………………………...67 4.1. General background…………………………………………………………………………….71 4.2. Results………………………………………………………………………………………………..74 4.3. Conclusions…………………………………………………………………………………………84 Chapter 5. Production of free fatty acids via acid hydrolysis……………………………….89 5.1. General background…………………………………………………………………………….93 5.2. Results………………………………………………………………………………………………..96 5.3. Conclusions……………………………………………………………………………………….109 SECTION 2. SYNTHESIS OF BIOPOLYOLS AND POLYURETHANE FOAMS Chapter 6. Synthesis of rigid polyurethane foams of azidified biopolyols………….113 6.1. General background…………………………………………………………………………..117 6.2. Materials...…………………………………………………………………………………………118 6.3. Results………………………………………………………………………………………………118 6.4. Conclusions...……………………………………………………………………………………..126 Chapter 7. Production of rigid polyurethane foams from phosphorylated biopolyols 6.1. General background…………………………………………………………………………..135 6.2. Materials...…………………………………………………………………………………………136 6.3. Results………………………………………………………………………………………………136 6.4. Conclusions...……………………………………………………………………………………..148 Table of contents SECTION 3. SYNTHESIS OF BIOLUBRICANTS DERIVED FROM FREE FATTY ACIDS Chapter 8. Synthesis and characterization of estolide-based biolubricants………..153 8.1. General background…………………………………………………………………………..157 8.2. Results…...…………………………………………………………………………………………159 8.3. Conclusions……………………………………………………………………………………….167 Chapter 9. Development of TMP-based biolubricants………………………………………171 9.1. General background…………………………………………………………………………..175 9.2. Results…...…………………………………………………………………………………………178 9.3. Conclusions……………………………………………………………………………………….190 Chapter 10. Lignin as additive in PEG-based lubricants 10.1. General background…………………………………………………………………………197 10.2. Results…...……………………………………………………………………………………….203 10.3. Conclusions……………………………………………………………………………………..220 Chapter 11. Conclusions and future work………………………………………………………..227 11.1. Conclusions…………..…………………………………………………………………………229 11.2. Future work…………………………………………………………………………………….230 Summary Nowadays, the society is enormously dependent on fossil resources to produce derived chemicals and fuels, which makes that its consumption grows continuously. However, petroleum, carbon and natural gas have a finite character and its direct impact on the global warming by the emissions of greenhouse gases and other environmental issues is well known. Hence, the search and development of sustainable and renewable production routes of fuels and materials is mandatory. Biomass has been proposed as the most interesting alternative feedstock due to its renewable character and its potential for producing derived materials and fuels. This research work is focused on the production of biobased materials by environmentally friendly processes using mainly vegetable oils as raw material. Biopolyols and biolubricants are the main targets because of its great consumption and the low biodegradability and high environmental impact of their non-renewable petroleum-based homologous. In order to promote a versatile and economically interesting full process, the research started up with the transformation of two different vegetable oils (namely grape seed and high-oleic sunflower oil) into platform chemicals which would be used in subsequent steps. Firstly, grape seed oil was successfully epoxidized in presence of peracetic acid generated in situ. The obtained kinetic model indicated that moderate high temperatures (90 ºC) and short reaction times (1 h) are the optimal to minimize the effect of secondary reactions. Secondly, the viability of using DBSA as amphiphilic catalyst during the acid hydrolysis of vegetable oils was tested. The effect of temperature, reaction time and the concentrations of DBSA and water was determined through the experimental design technique. The results from the ANOVA test indicated the great influence of the temperature on the fatty acid content of the product. On the other hand, the influence of time was predicted to be almost negligible. Once that the platform chemicals were successfully obtained, the transformation into high added value products was studied. Firstly, the viability of the ring-opening reaction of oxirane groups contained in epoxidized grape seed oil to produce biopolyols was studied. In a first approach, NaN3 was used as ring-opening reagent, finding a covalent linkage among the azide group and the biopolyol. In this case, the Table of contents obtention of a rigid polyurethane foam using exclusively the azidified polyol was possible, achieving a significant improvement of the thermal stability of the foam. In a second approach, H3PO4 was used as ring-opening agent. Similar to NaN3, the covalent linkage of phosphate groups was demonstrated by FTIR and 31P-RMN. Unfortunately, the obtention of polyurethane foams using exclusively the phosphorylated polyol was not possible and uniquely a 57 wt.% was successfully incorporated into the formulation. Finally, thermogravimetric and surface composition analyses revealed the formation of a phosphoro-carbonaceous protective layer. Respecting to the production of biolubricants, free fatty acids were used as main raw material on its synthesis through two different processes.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    242 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us